
 Aspect-Oriented Feature Modelling for Software

Product Line
Guoheng Zhang

School of Electrical Engineering and Computer Science, University of Newcastle

Callaghan 2308, NSW, Australia
1
Guoheng.Zhang@studentmail.newcastle.edu.au

Phone Number: [02]4921-6317, Enrolment Date: 12/08/08

Abstract: Complex dependency modelling is one of the critical

issues in feature modelling. The complex dependency, a kind of

feature relationship among a set of features, is caused by the

system concerns, such as system mobility and system security.

Existing feature modelling approaches do not have sufficient

support to model the system concerns in feature models.

Furthermore, the proposed feature dependency types, such as

requires and excludes, are not sufficient to represent the complex

dependencies. We propose an aspect-oriented feature modelling

approach to identify and represent the complex dependencies. In

this approach, a concern modelling method, which relates the

features with system concerns, will be developed to identify the

complex dependencies. Furthermore, aspectual features, which

represent the system concerns, will be introduced into feature

models. A prototype tool will be developed to support the

conceptual work and a case study will be performed to validate

the proposed approach.

Keywords— Aspect-Oriented Modelling, Concern Modelling,

Crosscutting Concerns, Complex Dependencies, Contribution

Analysis.

I. INTRODUCTION

Software product line (SPL) [1] [2] is emerging as an

attractive software-reuse approach. A SPL consists of a set of

software-intensive systems which share a common set of

features that satisfy the specific requirements of a particular

market. In addition to the shared commonalities, members of a

SPL have different characteristics that are called variabilities.

Based on the commonalities and variabilities of the SPL

members, the core assets of a SPL can be produced.

Developing a set of new software systems out of the common

set of reusable core assets, as opposed to developing each

software system separately, will achieve high-level

constructive reuse and bring benefits, such as reducing time-

to-market, improving software quality and promoting software

development productivity.

Exploiting the commonalities and managing the

variabilities are two critical issues in SPL-based software

development. Currently, feature modelling has become a

promising approach for capturing the commonalities and

variabilities of members of a SPL [2]. Feature modelling has

two key issues: modelling variabilities and modelling

dependencies. Variabilities represent the configurable aspect

of a SPL while dependencies specify the inter-relationships

among the variabilities. In FODA (feature-oriented domain

analysis) [2], Kang et al. proposed the feature models to

represent the results of feature modelling and used the feature

diagram, a tree-structure modelling language, to represent the

feature models. Since then, although several approaches have

improved the initial feature modelling approach proposed in

FODA, some problems remain unresolved. One of the

problems is how to identify and represent complex

dependencies in feature models.

Dependencies play an important role in the product

configuration during which application engineers select a set

of features from the feature model based on the customer

requirements [1]. The dependencies among a set of

variabilities constrain the selection on variabilities. Existing

feature modelling approaches have proposed several

dependency types, such as “requires”, “excludes”, “hints” and

“hinders” [3]. These feature dependencies represent a one-to-

one feature relationship with explicit semantics. However,

these simple dependency types are not sufficient to represent

more complex dependencies caused by the system concerns,

such as mobility and security. Furthermore, existing feature

modelling approaches failed to identify these complex

dependencies because they didn’t take into account the system

concerns.

An aspect-oriented approach is proposed to identify and

represent the complex dependencies in feature models. In the

proposed approach, a concern modelling method, which aims

at detecting the relationships between system concerns and

features, will be developed to identify the complex

dependencies. A new type of features (aspectual features),

which aims at encapsulating the system concerns, will be

introduced into feature models. A representation schema for

the aspectual features will be developed to represent the

complex dependencies. A contribution analysis method will

be developed to detect the conflicts among system concerns in

feature models. It is expected that the explicit identification

and representation of these complex dependencies can

improve feature models from the following aspects:

• Improve the completeness of a feature model. The

identification of complex dependencies can improve

the completeness of a feature model.

• Improve the adaptability of a feature model. The

explicit representation of the complex dependencies

can improve the ability of a feature model to change

itself to adapt to the changed requirements.

 The remainder of this paper is organized as follows: section

2 discusses the research problems and identifies the research

questions. Section 3 proposes an approach to address the

research problems. Finally, section 4 concludes our work.

II. RESEARCH PROBLEMS

With respect to modelling dependencies, existing feature

modelling approaches propose several simple dependencies,

such as “requires”, “excludes”, “hints” and “hinders”.

“Requires” or “excludes” mean that the selection of one

variable feature implies or excludes the need of selecting

another variable feature. “Hints” or “hinders” indicate that the

selection of one variable feature has some positive or negative

influence on another variable feature [3]. However, these

simple dependencies are not sufficient to represent all inter-

relationships among features. The identification of these

simple dependencies is usually based on the functionalities of

features of product line members. However, some system

concerns, such as mobility, security and availability, may

crosscut a set of features and cause a kind of complex and

implicit inter-relationships among the set of features. It is

difficult to discover these complex dependencies without

modelling the system concerns. However, current feature

modelling approaches did not have sufficient support for

system concern modelling. Consequently, the generated

feature models based on these approaches may be incomplete

and invalid as complex dependencies cannot be appropriately

identified and represented in feature models.

Figure 1 A traditional feature model

An example is shown in Fig. 1 and Fig. 2 to contrast two

different feature models for the same “Tourist Guide”

software product line. In the traditional feature model (see Fig

1), two simple requires-dependencies are identified based on

the functionalities of features without considering system

concerns. Based on the domain knowledge and product

requirements, two system concerns, mobility and security are

considered important to this software product line. For each of

them, a set of features that are crosscut by this system concern

are identified. For example, “Devices”, “Network

Connection” and “Position Detection” are identified as the

features closely related with mobility of the system. A

complex dependency can be discovered based on the

relationships between the system mobility and these three

features. This complex dependency constrains the selections

on these three variabilities as follows: the high mobility will

imply the selection of “Light Device” on “Devices”,

“Wireless” on “Network Connection” and “Position

Detection”; the low mobility will imply the selection of

“Laptop” on “Devices” and “LAN Wireless” on “Network

Connection” and prohibit the selection of “Position Detection”

and “Satellite”. Therefore, after the complex dependencies

have been identified based on system concerns we found, the

original feature model shown in Fig. 1 is invalid and

incomplete because some important dependencies were

missed. The updated feature model including the identified

additional dependencies is shown in Fig. 2.

Figure 2 A feature model with complex dependencies

In fig. 2, two system concerns can be modelled as features.

There newly introduced features representing system concerns

may also have dependent relationships between them, e.g. one

system concern may conflict with another system concern. In

a product configuration, the conflict must be resolved by

making trade-offs between two system concerns. This kind of

trade-off may further constrain the selections of variabilities.

In fig. 3, the conflict between two system concerns, security

and mobility has been identified-high security and high

mobility cannot be selected in a single product. If high

security is required only low mobility can be accommodated,

and vice versa. For example, the selection of “Light Device”

on “Devices” and “Wireless” on “Network Connection” will

imply the high system mobility. The high mobility will lead to

the low security because of the conflict between the two

system concerns. The low security will further constrain the

selections on four variabilities: “Devices”, “Network

Connection”, “Authentication” and “Information Retrieval”.

Figure 3 A conflict between two system concerns in feature models

Based on the previous introduction on complex

dependencies, we formally define complex dependencies as

follows:

• It may be a one-to-many feature relationship: a set of

variable features in a feature model may be related with

each other, because they contribute to one system

concern.

• It may be a many-to-many feature relationship: a set of

variable features (contributing to one system concern)

may be related with another set of variable features

(contributing to another system concern) because of the

conflict between two system concerns.

The validation of a feature model is the prerequisite for

configuring valid products from a feature model. For the

traditional feature models, the validation aims at detecting the

conflicts among a set of simple feature dependencies, such as

“requires” and “excludes”. The validation of feature models

in our work is more complex, because the system concerns,

which cause complex dependencies, are introduced into

feature models. Besides the conflicts among simple

dependencies, the conflicts among system concerns also need

to be identified. In fig. 3, there exists a conflict between

security and mobility. This conflict is identified from two

variabilities, “Devices” and “Network Connection”, which are

crosscut by both mobility and security. For example, the high

mobility will imply the selection of “Light Device” and

“Wireless” while the high security will imply the selection of

“Laptop” and “LAN Wireless”. However, “Laptop” will

conflict with “Light Device”; and further “Wireless” and

“LAN Wireless” cannot be selected in a single product.

Therefore, the high security conflicts with the high mobility in

this feature model. The products, requiring both high security

and high mobility, cannot be configured from this feature

model. If this feature model needs to support this kind of

products, the feature dependencies must be modified.

One research question is identified from the research

problem: How to identify and represent the complex

dependencies explicitly in a feature model? This research

question has two critical issues: the identification method for

detecting the complex dependencies and the explicit

representation schemas for representing the complex

dependencies in a feature model.

III. PROPOSED APPROACH

An aspect-oriented approach (also refers to aspect-oriented

feature modelling) is proposed to identify and represent the

complex dependencies explicitly in a feature model. It

introduces aspect-oriented methodology into feature

modelling and generates an aspect-oriented feature model

(AO-FM).

Aspect-oriented methodology is used to identify and represent

crosscutting concerns at different abstract-level models [5]. At

requirement level, a crosscutting concern crosscuts several

other concerns by affecting their requirements. In feature

models, a system concern also crosscuts a set of variable

features by affecting their requirements to constrain their

selections. In this sense, the system concerns that cause

complex dependencies in a feature model can also be regarded

as crosscutting concerns. Aspect-oriented modelling method is

used to represent the crosscutting concerns and the

crosscutting relationships in high abstract-level models,

especially requirement models [6]. Feature models are also

coarse-grained requirement models. Therefore, the aspect-

oriented modelling method is a potential approach for

representing the complex dependencies which are caused by

the system concerns in a feature model.

The proposed approach consists of three sections: a

conceptual framework, a prototype tool and an evaluation

method.

A. Conceptual Framework

The conceptual framework provides the methodology that

is used to identify and represent complex dependencies in

feature models. To identify complex dependencies, we

develop a concern modelling method to model functional

concerns, system concerns and concern relationships. The

mapping between the functional concerns in a concern model

and the functional features in a feature model will be

established by relating their requirements. Next, the features

crosscut by a system concern can be discovered by the

concern relationships and the mapping relationships between a

feature model and a concern model. Finally, a complex

dependency among the identified features can be established

based on the domain knowledge on the system concerns and

the crosscut features. To represent the complex dependencies,

we adopt the philosophy of aspect-oriented modelling

methods and introduce a new kind of features (aspectual

features) to encapsulate the system concerns and represent the

complex dependencies. Further, we propose a contribution

analysis method to detect the conflict between two system

concerns.

1) Concern Modelling: Concern modelling aims at

identifying concerns and concern relationships for a software

product line and organizing these concerns in a concern model.

We establish a mapping between a concern model and a

feature model by relating their requirements. The features

crosscut by a system concern can be discovered through the

concern relationships and the mapping between a concern

model and a feature model. A complex dependency can be

established among the discovered features. There are four

critical issues in the concern modelling:

• A general concern space consists of the most general

concerns. It provides a framework for identifying and

specifying the concerns and concern relationships for a

specific system or a specific software product line.

• A meta-model for concern models defines the basic

elements of a concern model and the relationships

between these elements.

• Representation schemas for concerns and concern

relationships provide the structures to specify the

concerns and concern relationships.

• Mapping between functional concerns and functional

features bridges the concern model and the feature

model and provides a way to discover the features

crosscut by a system concern.

2) Aspectual Features: The system concerns identified in

concern modelling are represented as aspectual features in

feature models. The set of features crosscut by a system

concern are modelled as joinpoint features. To represent the

relationship between an aspectual feature and its associated

joinpoint features, the representation schemas for aspectual

features need include a set of elements:

• Role: Each aspectual feature has a property “aspectual”

and each joinpoint feature has a property “joinpoint” to

indicate their roles.

• Target: Each aspectual feature has a mapping target

when transforming a feature model to an architecture

model. The mapping target may be an aspectual

element in architecture models or a design decision

when designing the architecture.

• Composition Mechanism: Each aspectual feature has a

composition mechanism to represent the relationship

between an aspectual feature and its associated

joinpoint features. The composition mechanism

includes a quantification method to match an aspectual

feature to a set of joinpoint features.

• Advice: Each aspectual feature has an advice to

encapsulate the rules for describing how the aspectual

feature constrains the selections on its associated

joinpoint features.

3) Contribution Analysis: The contribution analysis

method aims at identifying the conflict between two aspectual

features. This identification is based on the contribution of one

aspectual feature to another aspectual feature. The

contribution may be positive, negative or none. If no features

are crosscut by both of the two aspectual features, the

contribution is none. If the system concern level of one

aspectual feature has some positive or (negative) influence on

the system concern level of another aspectual feature through

the variabilities crosscut by both of the two aspectual features,

the contribution is positive or negative. Therefore, the

negative contribution between two aspectual features indicates

a conflict between them. The conflicts must be resolved by

making trade-off decisions.

B. Prototype and Evaluation

A prototype tool will be developed to support the

conceptual framework. It will provide the following functions:

• Modelling: the prototype tool will provide the users

with an interface to input the elements of their feature

models and provide a window for visualizing the

generated feature models. The generated feature models

must conform to the meta-model of the aspect-oriented

feature models.

• Product Configuration: the prototype tool will provide

an interface to make trade-offs between two conflicting

aspectual features. The system concern levels in the

aspectual features can be selected based on the trade-

offs or the customer requirements. Further, the

prototype tool will support to select the desired features

from feature models. The validity of the configured

product will be tested by checking whether the selected

features conflict with the feature dependencies.

This approach will be validated on two issues: complex

dependency identification and complex dependency modelling.

Two medium-size case studies (tourist guide and smart home

software product line) and one industry-size case study

(library system product line) will be performed on existing

feature modelling approaches (such as FODA and FORM) and

aspect-oriented feature modelling approach to validate the

applicability of the proposed approach from two aspects: the

quality requirements satisfaction in the derived applications

and the inconsistencies existing in the derived applications

because of quality concerns.

IV. CONCLUSIONS

This paper proposes an approach to identify and represent

complex dependencies in a feature model. It is expected that

the successful completion of this work will improve the

completeness and adaptability of traditional feature models. In

the future, we will focus on the detailed implementation of the

proposed approach.

REFERENCES

[1] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing Cardinality-

based Feature Models and their Specialization,” in Software Process

Improvement and Practice, vol. 10(1), 2005, pp. 7-29.

[2] Kyo C. Kang, S. Cohen, J. Hess, W. Novak, and A. Petersem,

“Feature-Oriented Domain Analysis (FODA) Feasibility Study,” Tech.

Rep. CMU/SEI 90-TR-21, 1990.

[3] S. Buehne, G. Halmans, and K. Pohl, “Modelling Dependencies

between Variation Points in Use Case Diagrams,” in Proceedings of

9th International Workshop on Requirements Engineering, 2003.

[4] A. Schauerhuber, W. S., E. Kapsammer, W. Retschizegger, M.

Wimmer, and G. Kappel, "A survey on Aspect-Oriented Modeling

Approaches," 2006.

[5] A. Rashid, P. Sawyer, A. M.D. Moreira, and J. Araujo, “Early Aspects:

A Model for Aspect-Oriented Requirement Engineering,” in

Proceedings of the 10th Anniversary IEEE Joint International

Conference.

[6] http://en.wikipedia.org/wiki/Cross-cutting_concern

