Formalization of Architectural Refactorings

Syed Muhammad Ali Shah
School of Engineering and Advanced Technology
Massey University, Palmerston North, New Zealand
m.a.shah@massey.ac.nz
+64-2102400753
PhD Enrollment Date: 01/Sep/2008

Keywords-architectural smells, refactoring, dependency
graph, graph transformation

I. INTRODUCTION

Refactoring refers to a software transformation that
preserves the external behavior but improves the internal
software structure [1]. It helps in achieving quality
attributes such as modularity, maintainability, openness
and evolvability in a software system. Classical refac-
toring focuses on code level transformations in order to
get rid of unwanted structures known as code smells.
A code smell is an indication of a deeper problem in
the source code e.g. duplicate code, long methods, large
class. There exist some tools to detect these code smells
e.g. PMD, FindBugs etc. (Semi-) automated tool support
to refactoring code smells is available in most of the
software development environments (IDEs). For exam-
ple, the Eclipse IDE provides semi-automated support
for many low-level code refactorings, as described by
Fowler [1]. This eases the process to perform refactoring
quickly and safely.

There exist another class of refactorings that can
change high-level system design and architecture [2].
Architectural refactoring refers to semantic preserving
transformation of the software design, which improves
the architecture quality and preserves the external system
behavior [3]. The goal of architectural refactoring is to
improve the quality of software architecture by improv-
ing simplicity, expressiveness, flexibility, modularity and
maintainability. It is applied to the high-level design
elements such as subsystems, modules, components,
containers, packages, and relationships between these
elements in order to get rid of architecture smells. An
architecture smell is a problem in the higher level of
abstraction, e.g. cycles between containers and names-
paces, layering violations (referring to lower level layers
directly) and so on. Architectural refactoring has an
impact on different parts of the system and refactoring

at the architecture level can influence design and imple-
mentation. Many of the concepts from code refactoring
can be applied to the software architecture refactoring.
The impact of refactoring on the architecture level can
be very useful by leading to the architectural stability of
the system.

A number of architectural analysis tools have been
developed to identify the architecture level problems
e.g. Sotograph, Lattix, Structurel01, GQL4JUNG [4]
etc. These tools identify the refactoring opportunities in
existing projects and find architectural smells such as
circular dependency between software elements, layering
violations (referring to lower-level layers directly), com-
plexity (e.g. too many classes in a subsystem) etc. None
of these tool actually perform the automated refactoring.
We can automate the architectural refactoring process,
when we are able to formalize these refactorings. The ex-
isting specification of architectural refactorings, provided
by Roock and Lippert in their book on large refactorings
[5], is not precise enough to be used in the process of
automation with the tool support.

In this decade several frameworks have been in-
troduced that facilitate building systems with all the
desirable properties, such as maintenance, scalability,
openness, evolvability, modularity etc. These frame-
works include OSGi and its derivatives, Spring Dynamic
Modules and several Java Specification Requests (JSRs)
such as JSR(277,291,294). In order to take advantage
of these modularization techniques, many software ven-
dors are refactoring their existing monolithic architec-
tures to modular architectures e.g. BEA (Weblogic),
IBM(Websphere), JBOSS are refactoring their archi-
tectures to adopt OSGi [6]. Another Project named
as “Project Jigsaw” is initiated to refactor the Java
Development Kit (JDK) into a modular architecture to
improve some performance metrics such as download
size, starting time and memory management [7]. These
are the examples of large systems and manual refactoring
is an undesirable option.



This project aims at formalizing a partial set of
refactorings focusing on modularity of the system, as
proposed in [3], [5], [8]. Formalization is the first step
to achieve automation of the architectural refactorings,
the need for which is strongly supported in [1], [3], [5],
[9]. Some of the example refactorings that affect mod-
ularity are, cycles in namespaces, cycles in containers,
degenerated inheritance etc [8].

In order to formalize the architectural refactoring pro-
cess, we propose to develop a declarative language for
refactoring. The purpose of this declarative language will
be to precisely define the mechanics of the architectural
refactorings. A common way to approach this is to use
the divide-and-conquer strategy i.e. split a large refactor-
ing into a number of smaller primitive refactorings. This
is known as composition of refactorings and followed
by Kerievsky [10]. We will follow this strategy due to
the fact that any architectural refactoring drills down
to code level. However, the architectural refactorings
are not only limited to the code level refactorings (e.g.
Abstract Syntax Tree (AST) manipulation), but may also
involve other artifacts such as build scripts, deployment
descriptors, configuration files etc.

We propose to use the fitness functions in terms of
anti-patterns count and object-oriented metrics to ensure
that refactoring process has improved the design and
architecture. An important property of any refactoring
is that it should not introduce new behavior or faults
in the system. Therefore a refactoring requires that all
program invariants hold after the transformation process.
For this project we propose to evaluate our success
based on refactoring a set of existing systems avail-
able in Qualitas Corpus [11]. Type checking (through
compilation) and test cases are proposed to check the
correctness of refactoring on the dataset, because these
are the only accessible and available means in the dataset
that invariants are not violated.

II. PROBLEM DEFINITION

Software architecture is one of the earliest design
artifacts in the software development life cycle. It is
composed of the architectural structure (e.g. components
and interfaces), architecture style, relationship among
these and other low level design artifacts such as coding,
testing etc. Most of the systems start with a very clean
software architecture, but with the passage of time things
start getting messed due to the unstructured modifica-
tions in software. Stal [3] calls this “design erosion”,
where workarounds and patches in the system make
software architecture difficult to maintain and evolve.
However, the architectural refactoring can keep software
architecture clean, easy to maintain and easy to evolve.

Most of the literature in the field of refactoring is
focused on the code refactorings but the importance of
architectural refactoring is also mentioned by several
authors. Opdyke [12] and Roberts [13] call these refac-
torings as high-level refactorings. According to these
authors smaller refactorings can be composed together
to achieve the high-level refactorings. Fowler [1] in
his book on refactoring calls these refactorings as big
refactorings. According to Fowler and Kent Beck we can
not get benefits from the code level refactorings unless
we perform big refactorings. Roock and Lippert [5] in
their book focus on large refactorings. They introduced a
set of architectural smells or problems found in the high-
level system design and provide a formal specification
of these smells. Bourgin and Keller name architectural
refactorings as high-impact refactorings. They use ar-
chitecture violations as starting point for refactoring and
assess the impact of refactorings through code metrics.

The major difference between code and architectural
refactoring is that of scope of applicability. Code refac-
toring has local impact while architectural refactoring
has non-local impact on the whole system. Sufficient tool
support is available for code level refactorings, however
there is a critical need for automation of the architectural
refactorings with tool support. A need for architectural
refactoring tool support is indicated in the literature [1],
(2], 5], [9].

From economic perspective the architecture refac-
torings result in a resource demanding activity, when
performed manually [1]. This is due to the fact that these
refactorings are composed of so many smaller refactor-
ings and can not be performed altogether. Therefore there
exists some risk in performing these big refactorings.
Architectural refactorings can be automated with the help
of tool support if there is sufficient formalism available
for these refactorings. Formalization of the code refac-
toring is widely discussed in the literature while there
are a few references for architectural refactoring. As a
matter of the fact software architecture refactoring is
not very precise and concise when compared with its
counterpart code refactoring. This makes its formalism
a challenge. Existing formalization techniques [14], [15]
are not declarative enough to support the detection and
correction of architectural smells provided by Roock
and Lippert in their book on refactoring large software
projects [5] and other architecture smells provided by
Stal [3] and Dietrich et al. [8].

Therefore, in order to cope with the problems of man-
ual architectural refactorings, mitigate risk in performing
these refactorings and lack of tool support, there is a
critical need to formalize architectural refactorings. This



formalization aims at providing a formal support to a
set of architectural refactorings identified by [3], [5],
[8], so that these refactorings may be (semi-) automated
with the help of tool support. These refactorings are not
trivial code level refactorings, e.g. for achieving modu-
larity in the architectures to take advantage of current
modular techniques, we may need not only to refactor
code but also build scripts, deployment descriptors and
other related information. The research questions being
addressed in this project are as follows [3]:

1) How can we systematically formalize the vague
and abstract definitions of architecture level refac-
torings?

2) How to synchronize changes in the software archi-
tecture to implementation and vice versa?

3) What are the implications in providing declarative
approach to deal with architectural refactorings?

4) How easy it would be to integrate the architectural
refactoring support to IDEs?

[II. METHODOLOGY

In order to tackle the issues discussed in previous
section, we propose to formalize a set of architectural
refactorings. We will then evaluate our approach by
refactoring existing real world systems (dataset). The
dataset with sufficient test coverage will be extracted
from Qualitas Corpus [11] - a collection of open source
software systems. Refactoring will be performed over the
dataset. Results will be analyzed to evaluate the impact
of refactoring and finally repeating the experiment by
modifying refactoring if the results are not achieved.

A. Declarative Language for Architectural Refactoring

Architectural refactoring can be viewed as transfor-
mation of one model to another model having the same
or different meta-models. In this project we need a
declarative language to transform a model into another
model. This language needs to be expressive enough
to describe the patterns to be found in graphs and
transformations in graphs. Figure 1 shows the big picture
of the refactoring process. This process consists of three
phases. In simulation phase, models will be extracted
from programs and refactoring will be performed on
models. In application phase, scripts will be generated
from refactoring (transformation model) and will be
applied to the actual program to refactor it. In verification
phase, the refactored program and the target model will
be matched for consistency.

The declarative language for refactoring needs to be
expressive enough to gather information about a refac-
toring e.g. it should be able to describe patterns and

MODEL
(e.g. .| MODEL
GRAPH) I—:;
Refactormg
g
Extract & Extract
=
PEOGE AM ' ) .I FROGR AM
|
Fig. 1. Architectural Refactoring Process

transformations in graphs. It should also be able to define
higher order constructs such as edge or path constraints,
AST manipulation and description of graph properties.
This should have the parsing facility in order to generate
build scripts from transformation model, that will be
used to perform refactoring on program level. Tool
support is also required to automate the transformation
process.

We also need to define the meta model for refactoring
language. We have so far short listed a list of candidates
for meta modeling e.g. XML schema can be used to
define a meta model. The XML documents will rep-
resent the model. Eclipse Modeling Framework (EMF)
can also be used to define the meta model. We can
define the refactoring contents as different shapes and
the relationship between contents as edges. This model
can then be used to generate CASE tools through EMF
code generation facility. EMF also provides the ability to
describe additional semantics of the models with OCL
extensions. Extended Backus-Naur Form (EBNF) is a
notation for expressing context free grammars for lan-
guages. We can define the grammar for our declarative
language for refactoring.

B. Composite Refactorings

The idea behind composition of refactorings is to
perform a series of primitive refactorings to achieve a
large and complex refactoring. Refactorings have pre-
conditions representing initial conditions that must be
met in order to perform refactoring and post-conditions
that must be met in order to complete the refactoring
successfully. We propose to use the post-condition of a
refactoring as a pre-condition of the next refactoring in
the chain of composite refactoring. Since each primitive
refactoring is behavior preserving then the composition
should also be behavior preserving.



C. Fitness Functions

Fitness functions are based on a set of metrics that can
be used to assess the impact of refactoring on quality
of design. Improvement in fitness functions is important
because the goal of refactoring is to improve the qual-
ity attributes. We propose to use the fitness functions
that address the following quality attributes: modularity,
maintainability, reusability, modifiability, testability. Fit-
ness functions should be improved after the refactoring
process. We propose to use some of the relevant object
oriented metrics defined by Martin [16], Kemerer and
Chidamber [17].

D. Invariants

An invariant is a predicate that remains the same
before and after the execution of a program. In order
to check the correctness of refactoring, various ap-
proaches are available. We propose to use a pragmatic
approach based on testing and type-safety for checking
the correctness of refactoring. This is due to the reason
that we have to evaluate our project against a set of
existing real world systems. In this scenario, the only
available and accessible means to judge the program
behavior and correctness are type checking and test
cases. However this idea is not sufficient to prove the
program correctness but the use of testcases is seen to
be good enough by system developers. This also reflects
their preference of choosing what is relevant to them.
Therefore, we propose to use testcases and type checking
as a verification method for refactoring process.

IV. EVALUATION

This section establishes the criteria by which we
intend to judge the success of our proposed work. In our
experiment, we propose to use 20% of corpus programs
with the highest test coverage. This is due to the reason
that not all programs have test cases to verify program
correctness after transformation.

Fitness functions are a set of metrics used as a
measurement of the impact of refactoring on the software
architecture quality. Results can be validated with the
numerical measurement of these metrics before and after
applying architectural refactorings such that these fitness
functions will improve. The process of refactoring will
be considered as successful if we are able to improve
the fitness functions after applying refactoring.

We will make use of test cases available in the existing
systems to ensure the behavior preservation and refac-
toring correctness, because test cases reflect the actual
requirements and output required by software stakehold-
ers. So if a refactoring brings abnormal behavior in the

system, then test cases are not passed successfully. On
the other hand when test cases are passed successfully
it is likely that behavior is not changed. Therefore the
property of behavior preservation can be judged by
testing. Therefore all the test cases of a system need
to run successfully after applying refactoring and the
program compilation should be successful in order to
check the type-safety.

In conclusion to all this discussion, we define the suc-
cess of project when we are able to (semi-) automatically
refactor the selected representation of programs, such
that the behavior (Invariant) is preserved 100% and 80%
of the programs are improved by improving some of the
fitness functions.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

[2] F. Bourqun and R. K. Keller, “High-impact refactoring based on
architecture violations,” in CSMR '07: Proceedings of the 11th
European Conference on Software Maintenance and Reengineer-
ing. Washington, DC, USA: IEEE Computer Society, 2007, pp.
149-158.

[3] M. Stal, “Refactoring of software architecture,” OOPSLA 2008,
2008. [Online]. Available: http://www.oopsla.org/oopsla2008/
tutorials.html

[4] “Graph Query Language 4 JUNG (GQL4JUNG).” [Online].
Available: http://code.google.com/p/gqld4jung/

[5] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, 2006.

[6] “IBM, BEA and JBoss adopting OSGi.” [Online]. Available:
http://www.infoq.com/news/2008/02/0sgi_jee

[7]1 “Project jigsaw.” [Online]. Available: http://openjdk.java.net/
projects/jigsaw/

[8] J. Dietrich, C. McCartin, E. Tempero, and S. M. A. Shah,
“Barriers to modularity: An empirical study to assess the potential
for modularisation of java programs,” in Submitted in (ICSE)
2010, Cape Town, South Africa, 2010.

[9]1 T. Mens, S. Demeyer, and D. Janssens, “Formalising behaviour

preserving program transformations,” in International Conference

on Graph Transformation (ICGT 2002). Springer-Verlag, 2002,

pp- 286-301.

J. Kerievsky, Refactoring to Patterns. Pearson Higher Education,

2004.

“Qualitas research group, qualitas corpus version 20090202,

University of Auckland,, February 2009. [Online]. Available:

http://www.cs.auckland.ac.nz/~ewan/corpus

W. Opdyke, “Refactoring object-oriented frameworks,” Ph.D.

dissertation, University of Illinois at Urbana-Champaign, USA,

1992.

D. Roberts, “Practical analysis for refactoring,” Ph.D. disserta-

tion, University of Illinois at Urbana-Champaign, USA, 1999.

D. L. Mtayer, “Describing software architecture styles using

graph grammars.” IEEE Trans. Software Eng., vol. 24, no. 7,

pp- 521-533, 1998. [Online]. Available: http://dblp.uni-trier.de/

db/journals/tse/tse24.html#Metayer98

H. Fahmy and R. C. Holt, “Using graph rewriting to specify

software architectural transformations,” in In Proc. of Automated

Software Engineering (ASE, 2000, pp. 187-196.

R. Martin, “Object oriented design quality metrics: An analysis

of dependencies,” Report on object analysis and design, 1994.

S. R. Chidamber and C. F. Kemerer, “A metrics suite for object

oriented design,” Piscataway, NJ, USA, pp. 476493, 1994.

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]



