
Introduction to Microprocessors

The 8051 Instruction Set

8051 Instruction Set

♦ Introduction
♦ 8051 architecture and memory organization review
♦ Addressing Modes

 Register addressing
 Direct addressing
 Indirect addressing
 Immediate constant addressing
 Relative addressing
 Absolute addressing
 Long addressing
 Indexed addressing

♦ Instruction Types
 Arithmetic operations
 Logical operations
 Data transfer instructions
 Boolean variable instructions
 Program branching instructions

Introduction

♦ A computer instruction is made up of an operation code (op-
code) followed by either zero, one or two bytes of operands

♦ The op-code identifies the type of operation to be performed
while the operands identify the source and destination of the
data

♦ The operand can be:
 The data value itself
 A CPU register
 A memory location
 An I/O port

♦ If the instruction is associated with more than one operand,
the format is always:

Instruction Destination, Source

8051 Architecture Review

8051 Data Memory (RAM)

♦ Internal Data Memory space is
divided into three sections
 Lower 128
 Upper 128
 Special function register (SFR)

♦ There are 384 bytes of memory
space physically, though the
Upper 128 and SFRs share the
same addresses from location
80H to FFH.

♦ Appropriate instructions should
be used to access each memory
block

Lower 128—Register Banks and RAM

Bit-addressable
Area (16 bytes)

Register Banks
(8 bytes per
bank; 4 banks)

General
Purpose RAM
(80 bytes)

Special Function Registers (SFRs)

♦ SFRs provide control and
data exchange with the
microcontroller’s resources
and peripheral (not all are
shown here, only the ones
common to the core)

♦ Registers which have their
byte addresses ending with
0H or 8H are byte- as well as
bit- addressable

♦ Some registers are not bit-
addressable. These include
the stack pointer (SP) and
data pointer register (DPTR)

AT89C51AC3 Special Function Registers

Program Memory

♦ FLASH memory
 Can be reprogrammed in-circuit
 Provides non-volatile data

storage
 Allows field upgrades of the

8051 firmware
♦ The AT89C51AC3’s program

memory consists of 65536
bytes of FLASH

Boot Program Memory

Addressing Modes

♦ Eight modes of addressing are available with the 8051
♦ The different addressing modes determine how the operand

byte is selected

Addressing Modes Instruction
Register MOV A, B
Direct MOV 30H,A
Indirect ADD A,@R0
Immediate Constant ADD A,#80H
Relative* SJMP AHEAD
Absolute* AJMP BACK
Long* LJMP FAR_AHEAD
Indexed MOVC A,@A+PC

* Related to program branching instructions

Register Addressing

♦ The register addressing instruction involves information
transfer between registers

♦ Example:
MOV R0, A

♦ The instruction transfers the accumulator content into the R0
register. The register bank (Bank 0, 1, 2 or 3) must be
specified prior to this instruction.

Lower 128—Register Banks and RAM

Bit-addressable
Area (16 bytes)

Register Banks
(8 bytes per
bank; 4 banks)

General
Purpose RAM
(80 bytes)

Direct Addressing
♦ This mode allows you to specify the operand by giving its

actual memory address (typically specified in hexadecimal
format) or by giving its abbreviated name (e.g. P3)
Note: Abbreviated SFR names are often defined in a header file

♦ Example:

MOV A, P3 ;Transfer the contents of
;Port 3 to the accumulator

MOV A, 020H ;Transfer the contents of RAM
;location 20H to the accumulator

Indirect Addressing

♦ This mode uses a pointer to hold the effective address of the
operand

♦ Only registers R0, R1 and DPTR can be used as the pointer
registers

♦ The R0 and R1 registers can hold an 8-bit address, whereas
DPTR can hold a 16-bit address

♦ Examples:
MOV @R0,A ;Store the content of

;accumulator into the memory
;location pointed to by
;register R0. R0 could have an
;8-bit address, such as 60H.

MOVX A,@DPTR ;Transfer the contents from
;the memory location
;pointed to by DPTR into the
;accumulator. DPTR could have a
;16-bit address, such as 1234H.

Immediate Constant Addressing

♦ This mode of addressing uses either an 8- or 16-bit
constant value as the source operand

♦ This constant is specified in the instruction, rather than in
a register or a memory location

♦ The destination register should hold the same data size
which is specified by the source operand

♦ Examples:

ADD A,#030H ;Add 8-bit value of 30H to
;the accumulator register
;(which is an 8-bit register).

MOV DPTR,#0FE00H ;Move 16-bit data constant
;FE00H into the 16-bit Data
;Pointer Register.

Relative Addressing

♦ This mode of addressing is used with some type of jump
instructions, like SJMP (short jump) and conditional jumps
like JNZ

♦ These instructions transfer control from one part of a
program to another

♦ The destination address must be within -128 and +127 bytes
from the current instruction address because an 8-bit offset
is used (28 = 256)

♦ Example:

GoBack: DEC A ;Decrement A
JNZ GoBack ;If A is not zero, loop back

Absolute Addressing

♦ Two instructions associated with this mode of addressing
are ACALL and AJMP instructions

♦ These are 2-byte instructions where the 11-bit absolute
address is specified as the operand

♦ The upper 5 bits of the 16-bit PC address are not modified.
The lower 11 bits are loaded from this instruction. So, the
branch address must be within the current 2K byte page of
program memory (211 = 2048)

♦ Example:
ACALL PORT_INIT ;PORT_INIT should be

;located within 2k bytes.

PORT_INIT: MOV P0, #0FH ;PORT_INIT subroutine

Long Addressing

♦ This mode of addressing is used with the LCALL and LJMP
instructions

♦ It is a 3-byte instruction and the last 2 bytes specify a 16-bit
destination location where the program branches

♦ It allows use of the full 64 K code space
♦ The program will always branch to the same location no

matter where the program was previously

♦ Example:
LCALL TIMER_INIT ;TIMER_INIT address (16-bits

;long) is specified as the
;operand; In C, this will be a
;function call: Timer_Init().

TIMER_INIT: ORL TMOD,#01H ;TIMER_INIT subroutine

Indexed Addressing

♦ The Indexed addressing is useful when there is a need to retrieve data
from a look-up table

♦ A 16-bit register (data pointer) holds the base address and the
accumulator holds an 8-bit displacement or index value

♦ The sum of these two registers forms the effective address for a JMP or
MOVC instruction

♦ Example:
MOV A,#08H ;Offset from table start
MOV DPTR,#01F00H ;Table start address
MOVC A,@A+DPTR ;Gets target value from the table

;start address + offset and puts it
;in A.

♦ After the execution of the above instructions, the program will branch to
address 1F08H (1F00H+08H) and transfer into the accumulator the data
byte retrieved from that location (from the look-up table)

Instruction Types

♦ The 8051 instructions are divided into five functional groups:
Arithmetic operations
Logical operations
Data transfer operations
Boolean variable operations
Program branching operations

Arithmetic Operations

♦ With arithmetic instructions, the 8051 CPU has no special knowledge of
the data format (e.g. signed binary, unsigned binary, binary coded
decimal, ASCII, etc.)

♦ The appropriate status bits in the PSW are set when specific conditions
are met, which allows the user software to manage the different data
formats

♦ [@Ri] implies contents of
memory location pointed to by
R0 or R1

♦ Rn refers to registers R0-R7 of
the currently selected register
bank

Logical Operations

♦ Logical instructions perform
Boolean operations (AND,
OR, XOR, and NOT) on
data bytes on a bit-by-bit
basis

♦ Examples:

ANL A, #02H ;Mask bit 1
ORL TCON, A ;TCON=TCON-OR-A

Data Transfer Instructions
♦ Data transfer instructions can be

used to transfer data between an
internal RAM location and an SFR
location without going through the
accumulator

♦ It is also possible to transfer data
between the internal and external
RAM by using indirect addressing

♦ The upper 128 bytes of data RAM
are accessed only by indirect
addressing and the SFRs are
accessed only by direct addressing

Mnemonic Description
MOV @Ri, direct [@Ri] = [direct]

MOV @Ri, #data [@Ri] = immediate data

MOV DPTR, #data 16 [DPTR] = immediate data

MOVC A,@A+DPTR A = Code byte from [@A+DPTR]

MOVC A,@A+PC A = Code byte from [@A+PC]

MOVX A,@Ri A = Data byte from external ram [@Ri]

MOVX A,@DPTR A = Data byte from external ram [@DPTR]

MOVX @Ri, A External[@Ri] = A

MOVX @DPTR,A External[@DPTR] = A

PUSH direct Push into stack

POP direct Pop from stack

XCH A,Rn A = [Rn], [Rn] = A

XCH A, direct A = [direct], [direct] = A

XCH A, @Ri A = [@Rn], [@Rn] = A

XCHD A,@Ri Exchange low order digits

Boolean Variable Instructions
♦ The 8051 processor can perform

single bit operations
♦ The operations include set, clear,

and, or and complement instructions
♦ Also included are bit–level moves or

conditional jump instructions
♦ All bit accesses use direct

addressing

♦ Examples:

SETB TR0 ;Start Timer0.

POLL: JNB TR0, POLL ;Wait
till timer overflows.

Mnemonic Description
CLR C Clear C

CLR bit Clear direct bit

SETB C Set C

SETB bit Set direct bit

CPL C Complement c

CPL bit Complement direct bit

ANL C,bit AND bit with C

ANL C,/bit AND NOT bit with C

ORL C,bit OR bit with C

ORL C,/bit OR NOT bit with C

MOV C,bit MOV bit to C

MOV bit,C MOV C to bit

JC rel Jump if C set

JNC rel Jump if C not set

JB bit,rel Jump if specified bit set

JNB bit,rel Jump if specified bit not set

JBC bit,rel if specified bit set then clear it and
jump

Program Branching Instructions

♦ Program branching
instructions are used to
control the flow of program
execution

♦ Some instructions provide
decision making capabilities
before transferring control
to other parts of the
program (conditional
branches).

Mnemonic Description
ACALL addr11 Absolute subroutine call

LCALL addr16 Long subroutine call

RET Return from subroutine

RETI Return from interrupt

AJMP addr11 Absolute jump

LJMP addr16 Long jump

SJMP rel Short jump

JMP @A+DPTR Jump indirect

JZ rel Jump if A=0

JNZ rel Jump if A NOT=0

CJNE A,direct,rel

Compare and Jump if Not Equal
CJNE A,#data,rel

CJNE Rn,#data,rel

CJNE @Ri,#data,rel

DJNZ Rn,rel
Decrement and Jump if Not Zero

DJNZ direct,rel

NOP No Operation

Appendix
8051 Instruction

Arithmetic Operations

♦ [@Ri] implies contents
of memory location
pointed to by R0 or R1

♦ Rn refers to registers
R0-R7 of the currently
selected register bank

ADD A,<source-byte> ADDC A,<source-byte>

♦ ADD adds the data byte specified by the source operand to
the accumulator, leaving the result in the accumulator

♦ ADDC adds the data byte specified by the source operand,
the carry flag and the accumulator contents, leaving the
result in the accumulator

♦ Operation of both the instructions, ADD and ADDC, can
affect the carry flag (CY), auxiliary carry flag (AC) and the
overflow flag (OV)
 CY=1 If there is a carryout from bit 7; cleared otherwise
 AC =1 If there is a carryout from the lower 4-bit of A i.e. from bit 3;

cleared otherwise
 OV=1 If the signed result cannot be expressed within the number

of bits in the destination operand; cleared otherwise

SUBB A,<source-byte>

♦ SUBB subtracts the specified data byte and the carry flag together from
the accumulator, leaving the result in the accumulator
CY=1 If a borrow is needed for bit 7; cleared otherwise
AC =1 If a borrow is needed for bit 3, cleared otherwise
OV=1 If a borrow is needed into bit 6, but not into bit 7, or into bit 7,

but not into bit 6.
♦ Example:

The accumulator holds 0C1H (11000001B), Register1 holds 40H
(01000000B) and the CY=1.The instruction,

SUBB A, R1

gives the value 70H (01110000B) in the accumulator, with the CY=0 and
AC=0 but OV=1

INC <byte>

♦ Increments the data variable by 1. The instruction is used in register,
direct or register direct addressing modes

♦ Example:
INC 6FH

If the internal RAM location 6FH contains 30H, then the instruction
increments this value, leaving 31H in location 6FH

♦ Example:
MOV R1, #5E
INC R1
INC @R1

♦ If R1=5E (01011110) and internal RAM location 5FH contains 20H, the
instructions will result in R1=5FH and internal RAM location 5FH to
increment by one to 21H

DEC <byte>

♦ The data variable is decremented by 1

♦ The instruction is used in accumulator, register, direct or
register direct addressing modes

♦ A data of value 00H underflows to FFH after the operation

♦ No flags are affected

INC DPTR

♦ Increments the 16-bit data pointer by 1

♦ DPTR is the only 16-bit register that can be incremented

♦ The instruction adds one to the contents of DPTR directly

MUL AB

♦ Multiplies A & B and the 16-bit result stored in [B15-8], [A7-0]

♦ Multiplies the unsigned 8-bit integers in the accumulator and the B
register

♦ The Low order byte of the 16-bit product will go to the accumulator
and the High order byte will go to the B register

♦ If the product is greater than 255 (FFH), the overflow flag is set;
otherwise it is cleared. The carry flag is always cleared.

♦ If ACC=85 (55H) and B=23 (17H), the instruction gives the product
1955 (07A3H), so B is now 07H and the accumulator is A3H. The
overflow flag is set and the carry flag is cleared.

DIV AB

♦ Divides A by B

♦ The integer part of the quotient is stored in A and the
remainder goes to the B register

♦ If ACC=90 (5AH) and B=05(05H), the instruction leaves 18
(12H) in ACC and the value 00 (00H) in B, since 90/5 = 18
(quotient) and 00 (remainder)

♦ Carry and OV are both cleared

♦ If B contains 00H before the division operation, then the
values stored in ACC and B are undefined and an overflow
flag is set. The carry flag is cleared.

DA A

♦ This is a decimal adjust instruction
♦ It adjusts the 8-bit value in ACC resulting from operations

like ADD or ADDC and produces two 4-bit digits (in packed
Binary Coded Decimal (BCD) format)

♦ Effectively, this instruction performs the decimal conversion
by adding 00H, 06H, 60H or 66H to the accumulator,
depending on the initial value of ACC and PSW

♦ If ACC bits A3-0 are greater than 9 (xxxx1010-xxxx1111), or
if AC=1, then a value 6 is added to the accumulator to
produce a correct BCD digit in the lower order nibble

♦ If CY=1, because the high order bits A7-4 is now exceeding
9 (1010xxxx-1111xxxx), then these high order bits will be
increased by 6 to produce a correct proper BCD in the high
order nibble but not clear the carry

Logical Operations

♦ Logical instructions perform Boolean operations (AND,
OR, XOR, and NOT) on data bytes on a bit-by-bit basis

ANL <dest-byte>,<source-byte>

♦ This instruction performs the logical AND operation on the
source and destination operands and stores the result in the
destination variable

♦ No flags are affected

♦ Example:
ANL A,R2

If ACC=D3H (11010011) and R2=75H (01110101), the result
of the instruction is ACC=51H (01010001)

♦ The following instruction is also useful when there is a need
to mask a byte

♦ Example:
ANL P1,#10111001B

ORL <dest-byte>,<source-byte>

♦ This instruction performs the logical OR operation on the
source and destination operands and stores the result in the
destination variable

♦ No flags are affected

♦ Example:
ORL A,R2

If ACC=D3H (11010011) and R2=75H (01110101), the result
of the instruction is ACC=F7H (11110111)

♦ Example:
ORL P1,#11000010B

This instruction sets bits 7, 6, and 1 of output Port 1

XRL <dest-byte>,<source-byte>

♦ This instruction performs the logical XOR (Exclusive OR)
operation on the source and destination operands and
stores the result in the destination variable

♦ No flags are affected

♦ Example:
XRL A,R0

If ACC=C3H (11000011) and R0=AAH (10101010), then the
instruction results in ACC=69H (01101001)

♦ Example:
XRL P1,#00110001

This instruction complements bits 5, 4, and 0 of
output Port 1

CLR A and CPL A

CLR A
♦ This instruction clears the accumulator (all bits set to 0)
♦ No flags are affected
♦ If ACC=C3H, then the instruction results in ACC=00H

CPL A
♦ This instruction logically complements each bit of the

accumulator (one’s complement)
♦ No flags are affected
♦ If ACC=C3H (11000011), then the instruction results in

ACC=3CH (00111100)

RL A

♦ The 8 bits in the accumulator are rotated one bit to the left.
Bit 7 is rotated into the bit 0 position.

♦ No flags are affected

♦ If ACC=C3H (11000011), then the instruction results in
ACC=87H (10000111) with the carry unaffected

RLC A

♦ The instruction rotates the accumulator contents one bit to
the left through the carry flag

♦ Bit 7 of the accumulator will move into carry flag and the
original value of the carry flag will move into the Bit 0
position

♦ No other flags are affected

♦ If ACC=C3H (11000011), and the carry flag is 1, the
instruction results in ACC=87H (10000111) with the carry
flag set

RR A

♦ The 8 bits in the accumulator are rotated one bit to the right.
Bit 0 is rotated into the bit 7 position.

♦ No flags are affected

♦ If ACC=C3H (11000011), then the instruction results in
ACC=E1H (11100001) with the carry unaffected

RRC A

♦ The instruction rotates the accumulator contents one bit to
the right through the carry flag

♦ The original value of carry flag will move into Bit 7 of the
accumulator and Bit 0 rotated into carry flag

♦ No other flags are affected

♦ If ACC=C3H (11000011), and the carry flag is 0, the
instruction results in ACC=61H (01100001) with the carry
flag set

SWAP A

♦ This instruction interchanges the low order 4-bit nibbles
(A3-0) with the high order 4-bit nibbles (A7-4) of the ACC

♦ The operation can also be thought of as a 4-bit rotate
instruction

♦ No flags are affected

♦ If ACC=C3H (11000011), then the instruction leaves
ACC=3CH (00111100)

Data Transfer Instructions

♦ Data transfer instructions can be used to transfer data
between an internal RAM location and SFR location without
going through the accumulator

♦ It is possible to transfer data between the internal and
external RAM by using indirect addressing

♦ The upper 128 bytes of data RAM are accessed only by
indirect addressing and the SFRs are accessed only by
direct addressing

Data Transfer Instructions

Mnemonic Description
MOV @Ri, direct [@Ri] = [direct]

MOV @Ri, #data [@Ri] = immediate data

MOV DPTR, #data 16 [DPTR] = immediate data

MOVC A,@A+DPTR A = Code byte from [@A+DPTR]

MOVC A,@A+PC A = Code byte from [@A+PC]

MOVX A,@Ri A = Data byte from external ram [@Ri]

MOVX A,@DPTR A = Data byte from external ram [@DPTR]

MOVX @Ri, A External[@Ri] = A

MOVX @DPTR,A External[@DPTR] = A

PUSH direct Push into stack

POP direct Pop from stack

XCH A,Rn A = [Rn], [Rn] = A

XCH A, direct A = [direct], [direct] = A

XCH A, @Ri A = [@Rn], [@Rn] = A

XCHD A,@Ri Exchange low order digits

MOV <dest-byte>,<source-byte>

♦ This instruction moves the source byte into the destination location
♦ The source byte is not affected, neither are any other registers or flags
♦ Example:

MOV R1,#60 ;R1=60H
MOV A,@R1 ;A=[60H]
MOV R2,#61 ;R2=61H
ADD A,@R2 ;A=A+[61H]
MOV R7,A ;R7=A

♦ If internal RAM locations 60H=10H, and 61H=20H, then after the
operations of the above instructions R7=A=30H. The data contents of
memory locations 60H and 61H remain intact.

MOV DPTR, #data 16

♦ This instruction loads the data pointer with the 16-bit
constant and no flags are affected

♦ Example:
MOV DPTR,#1032

♦ This instruction loads the value 1032H into the data pointer,
i.e. DPH=10H and DPL=32H.

MOVC A,@A + <base-reg>
♦ This instruction moves a code byte from program memory into ACC
♦ The effective address of the byte fetched is formed by adding the original 8-bit

accumulator contents and the contents of the base register, which is either the
data pointer (DPTR) or program counter (PC)

♦ 16-bit addition is performed and no flags are affected
♦ The instruction is useful in reading the look-up tables in the program memory
♦ If the PC is used, it is incremented to the address of the following instruction

before being added to the ACC
♦ Example:

CLR A
LOC1: INC A

MOVC A,@A + PC
RET

Look_up DB 10H
DB 20H
DB 30H
DB 40H

♦ The subroutine takes the value in the accumulator to 1 of 4 values
defined by the DB (define byte) directive

♦ After the operation of the subroutine it returns ACC=20H

MOVX <dest-byte>,<source-byte>
♦ This instruction transfers data between ACC and a byte of external data

memory

♦ There are two forms of this instruction, the only difference between them
is whether to use an 8-bit or 16-bit indirect addressing mode to access
the external data RAM

♦ The 8-bit form of the MOVX instruction uses the EMI0CN SFR to
determine the upper 8 bits of the effective address to be accessed and
the contents of R0 or R1 to determine the lower 8 bits of the effective
address to be accessed

♦ Example:
MOV EMI0CN,#10H ;Load high byte of

;address into EMI0CN.
MOV R0,#34H ;Load low byte of

;address into R0(or R1).
MOVX A,@R0 ;Load contents of 1034H

;into ACC.

MOVX <dest-byte>,<source-byte>

♦ The 16-bit form of the MOVX instruction accesses the memory location
pointed to by the contents of the DPTR register

♦ Example:
MOV DPTR,#1034H ;Load DPTR with 16 bit

;address to read (1034H).
MOVX A,@DPTR ;Load contents of 1034H

;into ACC.

♦ The above example uses the 16-bit immediate MOV DPTR instruction to
set the contents of DPTR

♦ Alternately, the DPTR can be accessed through the SFR registers DPH,
which contains the upper 8 bits of DPTR, and DPL, which contains the
lower 8 bits of DPTR

PUSH Direct

♦ This instruction increments the stack pointer (SP) by 1

♦ The contents of Direct, which is an internal memory location or a SFR,
are copied into the internal RAM location addressed by the stack pointer

♦ No flags are affected

♦ Example:
PUSH 22H
PUSH 23H

♦ Initially the SP points to memory location 4FH and the contents of
memory locations 22H and 23H are 11H and 12H respectively. After the
above instructions, SP=51H, and the internal RAM locations 50H and
51H will store 11H and 12H respectively.

POP Direct
♦ This instruction reads the contents of the internal RAM location

addressed by the stack pointer (SP) and decrements the stack pointer
by 1. The data read is then transferred to the Direct address which is an
internal memory or a SFR. No flags are affected.

♦ Example:
POP DPH
POP DPL

♦ If SP=51H originally and internal RAM locations 4FH, 50H and 51H
contain the values 30H, 11H and 12H respectively, the instructions
above leave SP=4FH and DPTR=1211H

POP SP
♦ If the above line of instruction follows, then SP=30H. In this case, SP is

decremented to 4EH before being loaded with the value popped (30H)

XCH A,<byte>

♦ This instruction swaps the contents of ACC with the contents
of the indicated data byte

♦ Example:
XCH A,@R0

♦ Suppose R0=2EH, ACC=F3H (11110011) and internal RAM
location 2EH=76H (01110110). The result of the above
instruction leaves RAM location 2EH=F3H and ACC=76H.

XCHD A,@Ri

♦ This instruction exchanges the low order nibble of ACC (bits
0-3), with that of the internal RAM location pointed to by Ri
register

♦ The high order nibbles (bits 7-4) of both the registers remain
the same

♦ No flags are affected

♦ Example:
XCHD A,@R0

If R0=2EH, ACC=76H (01110110) and internal RAM location
2EH=F3H (11110011), the result of the instruction leaves
RAM location 2EH=F6H (11110110) and
ACC=73H (01110011)

Boolean Variable Instructions

♦ The 8051 processor can
perform single bit operations

♦ The operations include set,
clear, as well as and, or and
complement instructions

♦ Also included are bit–level
moves or conditional jump
instructions

♦ All bit accesses use direct
addressing

Mnemonic Description

CLR C Clear C

CLR bit Clear direct bit

SETB C Set C

SETB bit Set direct bit

CPL C Complement c

CPL bit Complement direct bit

ANL C,bit AND bit with C

ANL C,/bit AND NOT bit with C

ORL C,bit OR bit with C

ORL C,/bit OR NOT bit with C

MOV C,bit MOV bit to C

MOV bit,C MOV C to bit

JC rel Jump if C set

JNC rel Jump if C not set

JB bit,rel Jump if specified bit set

JNB bit,rel Jump if specified bit not set

JBC bit,rel if specified bit set then clear it and
jump

CLR <bit>

♦ This operation clears (reset to 0) the specified bit indicated
in the instruction

♦ No other flags are affected

♦ CLR instruction can operate on the carry flag or any directly-
addressable bit

♦ Example:
CLR P2.7

If Port 2 has been previously written with DCH (11011100),
then the operation leaves the port set to 5CH (01011100)

SETB <bit>

♦ This operation sets the specified bit to 1

♦ SETB instruction can operate on the carry flag or any
directly-addressable bit

♦ No other flags are affected

♦ Example:
SETB C
SETB P2.0

♦ If the carry flag is cleared and the output Port 2 has the
value of 24H (00100100), then the result of the instructions
sets the carry flag to 1 and changes the Port 2 value to 25H
(00100101)

CPL <bit>

♦ This operation complements the bit indicated by the operand

♦ No other flags are affected

♦ CPL instruction can operate on the carry flag or any directly-
addressable bit

♦ Example:
CPL P2.1
CPL P2.2

♦ If Port 2 has the value of 53H (01010011) before the start of
the instructions, then after the execution of the instructions it
leaves the port set to 55H (01010101)

ANL C, <source-bit>
♦ This instruction ANDs the bit addressed with the Carry bit and stores the result in

the Carry bit itself

♦ If the source bit is a logical 0, then the instruction clears the carry flag; else the
carry flag is left in its original value

♦ If a slash (/) is used in the source operand bit, it means that the logical
complement of the addressed source bit is used, but the source bit itself is not
affected

♦ No other flags are affected

♦ Example:
MOV C,P2.0 ;Load C with input pin

;state of P2.0.
ANL C,P2.7 ;AND carry flag with

;bit 7 of P2.
MOV P2.1,C ;Move C to bit 1 of Port 2.
ANL C,/OV ;AND with inverse of OV flag.

♦ If P2.0=1, P2.7=0 and OV=0 initially, then after the above instructions,
P2.1=0, CY=0 and the OV remains unchanged, i.e. OV=0

ORL C, <source-bit>
♦ This instruction ORs the bit addressed with the Carry bit and stores the result in

the Carry bit itself

♦ It sets the carry flag if the source bit is a logical 1; else the carry is left in its
original value

♦ If a slash (/) is used in the source operand bit, it means that the logical
complement of the addressed source bit is used, but the source bit itself is not
affected

♦ No other flags are affected

♦ Example:
MOV C,P2.0 ;Load C with input pin

;state of P2.0.
ORL C,P2.7 ;OR carry flag with

;bit 7 of P2.
MOV P2.1,C ;Move C to bit 1 of

;port 2.
ORL C,/OV ;OR with inverse of OV

;flag.

MOV <dest-bit>,<source-bit>

♦ The instruction loads the value of source operand bit into the destination
operand bit

♦ One of the operands must be the carry flag; the other may be any
directly-addressable bit

♦ No other register or flag is affected

♦ Example:
MOV P2.3,C
MOV C,P3.3
MOV P2.0,C

♦ If P2=C5H (11000101), P3.3=0 and CY=1 initially, then after the above
instructions, P2=CCH (11001100) and CY=0.

JC rel

♦ This instruction branches to the address, indicated by the label, if the
carry flag is set, otherwise the program continues to the next instruction

♦ No flags are affected

♦ Example:
CLR C
SUBB A,R0
JC ARRAY1
MOV A,#20H

♦ The carry flag is cleared initially. After the SUBB instruction, if the value
of A is smaller than R0, then the instruction sets the carry flag and
causes program execution to branch to ARRAY1 address, otherwise it
continues to the MOV instruction.

JNC rel

♦ This instruction branches to the address, indicated by the label, if the
carry flag is not set, otherwise the program continues to the next
instruction

♦ No flags are affected. The carry flag is not modified.

♦ Example:
CLR C
SUBB A,R0
JNC ARRAY2
MOV A,#20H

♦ The above sequence of instructions will cause the jump to be taken if the
value of A is greater than or equal to R0. Otherwise the program will
continue to the MOV instruction.

JB <bit>,rel

♦ This instruction jumps to the address indicated if the
destination bit is 1, otherwise the program continues to the
next instruction

♦ No flags are affected. The bit tested is not modified.

♦ Example:
JB ACC.7,ARRAY1
JB P1.2,ARRAY2

♦ If the accumulator value is 01001010 and Port 1=57H
(01010111), then the above instruction sequence will cause
the program to branch to the instruction at ARRAY2

JNB <bit>,rel

♦ This instruction jumps to the address indicated if the
destination bit is 0, otherwise the program continues to the
next instruction

♦ No flags are affected. The bit tested is not modified.

♦ Example:
JNB ACC.6,ARRAY1
JNB P1.3,ARRAY2

♦ If the accumulator value is 01001010 and Port 1=57H
(01010111), then the above instruction sequence will cause
the program to branch to the instruction at ARRAY2

JBC <bit>,rel

♦ If the source bit is 1, this instruction clears it and branches to
the address indicated; else it proceeds with the next
instruction

♦ The bit is not cleared if it is already a 0. No flags are
affected.

♦ Example:
JBC P1.3,ARRAY1
JBC P1.2,ARRAY2

♦ If P1=56H (01010110), the above instruction sequence will
cause the program to branch to the instruction at
ARRAY2, modifying P1 to 52H (01010010)

Program Branching Instructions

♦ Program branching
instructions are used to
control the flow of actions
in a program

♦ Some instructions provide
decision making
capabilities and transfer
control to other parts of the
program, e.g. conditional
and unconditional branches

Mnemonic Description

ACALL addr11 Absolute subroutine call

LCALL addr16 Long subroutine call

RET Return from subroutine

RETI Return from interrupt

AJMP addr11 Absolute jump

LJMP addr16 Long jump

SJMP rel Short jump

JMP @A+DPTR Jump indirect

JZ rel Jump if A=0

JNZ rel Jump if A NOT=0

CJNE A,direct,rel

Compare and Jump if Not Equal
CJNE A,#data,rel

CJNE Rn,#data,rel

CJNE @Ri,#data,rel

DJNZ Rn,rel Decrement and Jump if Not
ZeroDJNZ direct,rel

NOP No Operation

ACALL addr11
♦ This instruction unconditionally calls a subroutine indicated by the

address
♦ The operation will cause the PC to increase by 2, then it pushes the 16-

bit PC value onto the stack (low order byte first) and increments the
stack pointer twice

♦ The PC is now loaded with the value addr11 and the program execution
continues from this new location

♦ The subroutine called must therefore start within the same 2 kB block of
the program memory

♦ No flags are affected

♦ Example:
ACALL LOC_SUB

♦ If SP=07H initially and the label “LOC_SUB” is at program memory
location 0567H, then executing the instruction at location 0230H,
SP=09H, internal RAM locations 08H and 09H will contain 32H
and 02H respectively and PC=0567H

LCALL addr16
♦ This instruction calls a subroutine located at the indicated address

♦ The operation will cause the PC to increase by 3, then it pushes the 16-
bit PC value onto the stack (low order byte first) and increments the
stack pointer twice

♦ The PC is then loaded with the value addr16 and the program execution
continues from this new location

♦ Since it is a Long call, the subroutine may therefore begin anywhere in
the full 64 kB program memory address space

♦ No flags are affected

♦ Example:
LCALL LOC_SUB

♦ Initially, SP=07H and the label “LOC_SUB” is at program memory
location 2034H. Executing the instruction at location 0230H,
SP=09H, internal RAM locations 08H and 09H contain 33H
and 02H respectively and PC=2034H

RET

♦ This instruction returns the program from a subroutine

♦ RET pops the high byte and low byte address of PC from
the stack and decrements the SP by 2

♦ The execution of the instruction will result in the program to
resume from the location just after the “call” instruction

♦ No flags are affected

♦ Suppose SP=0BH originally and internal RAM locations 0AH
and 0BH contain the values 30H and 02H respectively. The
instruction leaves SP=09H and program execution will
continue at location 0230H

RETI
♦ This instruction returns the program from an interrupt

subroutine
♦ RETI pops the high byte and low byte address of PC from

the stack and restores the interrupt logic to accept additional
interrupts

♦ SP decrements by 2 and no other registers are affected.
However the PSW is not automatically restored to its pre-
interrupt status

♦ After the RETI, program execution will resume immediately
after the point at which the interrupt is detected

♦ Suppose SP=0BH originally and an interrupt is detected
during the instruction ending at location 0213H
 Internal RAM locations 0AH and 0BH contain the values 14H and

02H respectively
 The RETI instruction leaves SP=09H and returns

program execution to location 0234H

AJMP addr11

♦ The AJMP instruction transfers program execution to the
destination address which is located at the absolute short
range distance (short range means 11-bit address)

♦ The destination must therefore be within the same 2kB block
of program memory

♦ Example:
AJMP NEAR

♦ If the label NEAR is at program memory location 0120H, the
AJMP instruction at location 0234H loads the PC with
0120H

LJMP addr16

♦ The LJMP instruction transfers program execution to the
destination address which is located at the absolute long
range distance (long range means 16-bit address)

♦ The destination may therefore be anywhere in the full 64 kB
program memory address space

♦ No flags are affected

♦ Example:
LJMP FAR_ADR

♦ If the label FAR_ADR is at program memory location 3456H,
the LJMP instruction at location 0120H loads the PC
with 3456H

SJMP rel

♦ This is a short jump instruction, which increments the PC by 2
and then adds the relative value ‘rel’ (signed 8-bit) to the PC

♦ This will be the new address where the program would branch
to unconditionally

♦ Therefore, the range of destination allowed is from -128 to
+127 bytes from the instruction

♦ Example:
SJMP RELSRT

♦ If the label RELSRT is at program memory location 0120H
and the SJMP instruction is located at address 0100H,
after executing the instruction, PC=0120H.

JMP @A + DPTR

♦ This instruction adds the 8-bit unsigned value of the ACC to the 16-bit
data pointer and the resulting sum is returned to the PC

♦ Neither ACC nor DPTR is altered

♦ No flags are affected

♦ Example:
MOV DPTR, #LOOK_TBL
JMP @A + DPTR

LOOK_TBL: AJMP LOC0
AJMP LOC1
AJMP LOC2

If the ACC=02H, execution jumps to LOC1

♦ AJMP is a two byte instruction

JZ rel

♦ This instruction branches to the destination address if
ACC=0; else the program continues to the next instruction

♦ The ACC is not modified and no flags are affected

♦ Example:
SUBB A,#20H
JZ LABEL1
DEC A

♦ If ACC originally holds 20H and CY=0, then the SUBB
instruction changes ACC to 00H and causes the program
execution to continue at the instruction identified by
LABEL1; otherwise the program continues to the DEC
instruction

JNZ rel

♦ This instruction branches to the destination address if any
bit of ACC is a 1; else the program continues to the next
instruction

♦ The ACC is not modified and no flags are affected

♦ Example:
DEC A
JNZ LABEL2
MOV RO, A

♦ If ACC originally holds 00H, then the instructions change
ACC to FFH and cause the program execution to continue
at the instruction identified by LABEL2; otherwise the
program continues to MOV instruction

CJNE <dest-byte>,<source-byte>,rel

♦ This instruction compares the magnitude of the dest-byte and the
source-byte and branches if their values are not equal

♦ The carry flag is set if the unsigned dest-byte is less than the unsigned
integer source-byte; otherwise, the carry flag is cleared

♦ Neither operand is affected

♦ Example:
CJNE R3,#50H,NEQU

… … ;R3 = 50H
NEQU: JC LOC1 ;If R3 < 50H

… … ;R7 > 50H
LOC1: … … ;R3 < 50H

DJNZ <byte>,<rel-addr>
♦ This instruction is ”decrement jump not zero”
♦ It decrements the contents of the destination location and if the resulting

value is not 0, branches to the address indicated by the source operand
♦ An original value of 00H underflows to FFH
♦ No flags are affected

♦ Example:
DJNZ 20H,LOC1
DJNZ 30H,LOC2
DJNZ 40H,LOC3

♦ If internal RAM locations 20H, 30H and 40H contain the values 01H,
5FH and 16H respectively, the above instruction sequence will cause a
jump to the instruction at LOC2, with the values 00H, 5EH, and 15H in
the 3 RAM locations.
 Note, the first instruction will not branch to LOC1 because the [20H] = 00H,

hence the program continues to the second instruction
 Only after the execution of the second instruction (where the

location [30H] = 5FH), then the branching takes place

NOP

♦ This is the no operation instruction
♦ The instruction takes one machine cycle operation time
♦ Hence it is useful to time the ON/OFF bit of an output port
♦ Example:

CLR P1.2
NOP
NOP
NOP
NOP
SETB P1.2

♦ The above sequence of instructions outputs a low-going output pulse on
bit 2 of Port 1 lasting exactly 5 cycles.
 Note a simple SETB/CLR generates a 1 cycle pulse, so four additional

cycles must be inserted in order to have a 5-clock
pulse width

Thanks to www.silabs.com/MCU

	Introduction to Microprocessors
	8051 Instruction Set
	Introduction
	8051 Architecture Review
	8051 Data Memory (RAM)
	Lower 128—Register Banks and RAM
	Special Function Registers (SFRs)
	AT89C51AC3 Special Function Registers
	Program Memory
	Slide Number 10
	Addressing Modes
	Register Addressing
	Lower 128—Register Banks and RAM
	Direct Addressing
	Indirect Addressing
	Immediate Constant Addressing
	Relative Addressing
	Absolute Addressing
	Long Addressing
	Indexed Addressing
	Instruction Types
	Arithmetic Operations
	Logical Operations
	Data Transfer Instructions
	Boolean Variable Instructions
	Program Branching Instructions
	Appendix
	Arithmetic Operations
	ADD	A,<source-byte> ADDC A,<source-byte>
	SUBB A,<source-byte>
	INC	<byte>
	DEC	 <byte>
	INC	DPTR
	MUL	 AB
	DIV AB
	DA A
	Logical Operations
	ANL	<dest-byte>,<source-byte>
	ORL	<dest-byte>,<source-byte>
	XRL	<dest-byte>,<source-byte>
	CLR A and CPL A
	RL A
	RLC	 A
	RR A
	RRC	 A
	SWAP A
	Data Transfer Instructions
	Data Transfer Instructions
	MOV	 <dest-byte>,<source-byte>
	MOV	 DPTR, #data 16
	MOVC A,@A + <base-reg>
	MOVX <dest-byte>,<source-byte>
	MOVX <dest-byte>,<source-byte>
	PUSH Direct
	POP	Direct
	XCH	 A,<byte>
	XCHD A,@Ri
	Boolean Variable Instructions
	CLR	<bit>
	SETB <bit>
	CPL	<bit>
	ANL	C, <source-bit>
	ORL	C, <source-bit>
	MOV	 <dest-bit>,<source-bit>
	JC rel
	JNC	rel
	JB <bit>,rel
	JNB	<bit>,rel
	JBC	<bit>,rel
	Program Branching Instructions
	ACALL addr11
	LCALL addr16
	RET
	RETI
	AJMP addr11
	LJMP addr16
	SJMP rel
	JMP	@A + DPTR
	JZ rel
	JNZ	rel
	CJNE <dest-byte>,<source-byte>,rel
	DJNZ <byte>,<rel-addr>
	NOP
	Thanks to www.silabs.com/MCU

