Introduction to Microprocessors

The 8051 Instruction Set

8051 Instruction Set

¢ Introduction
¢ 8051 architecture and memory organization review

¢ Addressing Modes
» Register addressing
Direct addressing
Indirect addressing
Immediate constant addressing
Relative addressing
Absolute addressing
Long addressing
» Indexed addressing

¢ Instruction Types
» Arithmetic operations
» Logical operations
» Data transfer instructions
» Boolean variable instructions
» Program branching instructions

VV V V V V

Introduction

¢ A computer instruction is made up of an operation code (op-
code) followed by either zero, one or two bytes of operands

¢ The op-code identifies the type of operation to be performed
while the operands identify the source and destination of the
data

¢ The operand can be:

» The data value itself
» A CPU register

» A memory location
» An |/O port

¢ If the instruction is associated with more than one operand,
the format is always:

Instruction Destination, Source

8051 Architecture Review

P0.0 - PO.7 P20 - P2.7

PRAAALAL aatrgaar
vrrrvyve wvvvvees

PORT 0 DRIVERS l l PORT 2 DRIVERS l

=f i i

RAM_ADDR. PORT 0 PORT 2
REGISTER RAM LATCH LATCH FLASH
v v v A
Y Y Y
v
PROGRAM
B STACK
ACC ADDRESS
REGISTER POINTER REGISTER
v

BUFFER
T™MP2

TMP1 |

PC
INCREMENTER

INTERRUPT, SERIAL PORT,
AND TIMER BLOCKS

A
PROGRAM
PSW COUNTER

ML

PSEN +——]
ALEPROG 4——| TIING INSTRUCTION | v 4 v » DPTR
EA / Vpy — 1 CONTROL REGISTER 3
RST ——P|

Y A
PORT 1 PORT 3
LATCH LATCH

A

Qa 5 S]
& X & 8w
Y A 4
' I_OSC_I l PORT 1 DRIVERS l 4" PORT 3 DRIVERS l “ f “
N E I S K L3 JE 3 T 3 3K, 3K, S
il O s AN I N (A 4 Y
T T P10 - P1.7 P3.0 - P3.7 XTAL1
? XTAL2 < UART 2%2?3 PF%M 'Z%ﬁg" PCA || Timer2
2kx8

PSEN

cPu (=

[[I [
Parallel /0 Ports and Ext. Bug| (Watch| | Emul | | 10 bit
Dog Unit ADC
Port OF‘ort 1 |Port 2|Port 3|Port 4

A 4 AdA

‘ ‘ } \AA]

- - =z o o o8 OO

5 FFOEE fs R OFoa g5¢
(4

B L L L

8051 Data Memory (RAM)

¢ Internal Data Memory space Is
divided into three sections

» Lower 128 DATA MEMORY (RAM)
» Upper 128 INTERMNAL DATA ADDRESS SPACE

> Special function register (SFR) ~ “"| Upper 128 RAM
{Indirect Addressing

Special Function
Register's

0x30 Only) (Direct Addressing Cnly)
¢ There are 384 bytes of memory ™F (Oirect and Indrec b
. Irecl and Indirec
space physically, though the Addressing) Lower 128 RAM
Upper 128 and SFRs sharethe 0x30 (Direct and Indirect
0x2F Addressing)

same addresses from location 0520

80H to FFH. Ox1F
0x00

¢ Appropriate instructions should
be used to access each memory
block

Lower 128—Register Banks and RAM

Bit-addressable
Area (16 bytes)

o

—_

— T E W A & - 4o I

r.

General
Purpose RAM
(80 bytes)

DATA MEMORY (RAM)
INTERNAL DATA ADDRESS SPACE

il Bit Address

TF

Genera

Furpose

Rl

a0
2F FFIFE|7D | 7C | Ya| 7A| T2 | 78
2E IFITE | |74 | 73| 72| 71| T
20 &GF |BE |60 | GC | 6B | 6A | B9 | &8
2C 67 |66 |65 |64 | &3 | 62 | B1 | &0
28 SF | SE | S0 | 5C | 5B | SA | 59| &8
20 GF |66 |55 |54 | 53| 52 | 51| &0
29 4F | 4E |40 | 40 | 40| 44| 49| S8
28 GF |98 | &85 | s |43 | 42 | 91 | |0
27 SFI3E |30 | 3C | 38| 3] 30| 38
26 aF |38 | 35 | 33 | 33 | 32 | 31| 3D
25 2FJ2E|2D | 2C | 2B | 2A| 20| 28
24 ZF |28 |25 |29 | 23 | 22 | 21| A0
23 iFJ4E|AD | AC | 18| 1A | 12 | 18
2z 17 | 16 15 149 13 12 | 11 | 10
21 OF |OE |OD | OC | OB | D& | 09 | 02
20 OF OB |05 | 04 | O3 | OZ | O7 | DD
iF
1= Bank 3
17

Bank 2
10
oF

Bank 1
0s
o7

0

Defaut Register Bank tar RO - BT

OXFF1 Upper 128 RAM Special Function

(Indirect Addressing Register's
0xa0 Only)y (Direct Addressing Only)
Ox7F ™

{Direct and Indirect

Addressing) Lower 128 RAM
030 {Direct and Indirect
Addressing)

Register Banks
(8 bytes per
bank; 4 banks)

Special Function Registers (SFRs)

DATA MEMORY (RAM)
INTERNAL DATA ADDRESS SPACE iricin Bit Address
OXFF | Upper 128 RAM Special Function ‘ FF
(Indirect Addressing Register's Fi Fr || Fs]Fa[FalF2]Fi | Fo B
0xB0 Only) (Direct Addressing Only)
Ox¥F N ED E7 |[e6 |Es | E4 | E3 | E2 [Et | EO | ACC
(Direct and I_ndirect l |] |] | |
o0 Addressing) Lower 128 RAM DO |07 |06 D504 |03 [D2] - [00] Psw
{Direct and Indirect
gﬁg Addressing) B - -T-Tec]eeealea]ee]| w
Ox1F
c:;ug B0 |67 |e6|Bs| B4 |Ba|e2 et [Bo| P3
¢ SFRs provide control and e e
data exchange with the a0 (AT as[as[adfas[az]ar]a0] P2
microcontroller’s resources 5 Not bi-adressabie SBUF
and peripheral (not all are ® o [sfooloc[ow]on]e] s fscon
shown here, only the ones TR EE R EEE R
common to the core) - e .
¢ Registers which have their ot gkt assabie THO
) ; il Mot bil-addressahle TLY
byte addresses ending with o Nt D_aocressatie 1o
B3 Mot bil-addrezsahle THOD
OH or 8H are byte- as well as T o A T e T i o
bit- addressable 77 Nk El-adck assabie pCON
¢ Some registers are not bit- 5 Nt bi-aadressabie DPH
addressable. These include = o o et i
the stack pointer (SP) and BO 87 [o6 |85 [84 [B3 [82 [B1 [80| PO

data pointer register (DPTR)

AT89C51AC3 Special Function Registers

Table 1. SFR Mapping

aFF

D=l
xTF

O30
(hdF

0w
Cx1F
Ox0d

DATA MEMORY (RAM)
INTERMAL DATA ADDRESS SPACE

Upper 128 RAM
{Indract Addrasseng
iy

Special Funciion
Hagislars

(Direct Acdressing Cnhy)

[Dingct and insdiracd
Addressing)

B Addressabla

Ganaral E‘upm-&
Ragittars

Loweg 128 RAM

Addrgssing)

Ny [Dvrafl and ndingct

F8h

Foh

E8h

EOh

D8h

DOh

C8h

Coh

B8h

BOh

A8h

AOh

98h

90h

88h

80h

0/8@ 1/9 2/A 3/B 4/C 5/D 6/E 7/F
IPL1 CH CCAPOH CCAP1H CCAP2H CCAP3H CCAP4H
XXXX X0XO0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
B ADCLK ADCON ADDL ADDH ADCF IPH1
0000 0000 xxx0 0000 X000 0000 0000 0000 0000 0000 0000 0000 XXXX XOXO0
IEN1 CL CCAPOL CCAP1L CCAP2L CCAP3L CCAP4L
XXXX XOXO0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
ACC
0000 0000
CCON CMOD CCAPMO CCAPM1 CCAPM2 CCAPM3 CCAPM4
0000 0000 00xx x000 x000 0000 x000 0000 x000 0000 x000 0000 x000 0000
PSW FCON EECON FSTA SPCON SPSCR SPDAT
0000 0000 0000 0000 xxxx xx00 XXXX Xx00 0001 0100 0000 0000 XXXX XXXX
T2CON T2MOD RCAP2L RCAP2H TL2 TH2
0000 0000 XXXX XX00 0000 0000 0000 0000 0000 0000 0000 0000
P4
xxx1 1111
IPLO SADEN
x000 0000 0000 0000
P3 IPHO
1111 1111 X000 0000
IENO SADDR
0000 0000 0000 0000
P2 AUXR1 WDTRST WDTPRG
1111 1111 xxxx 00x0 1111 1111 xxxx x000
SCON SBUF CKCON1
0000 0000 0000 0000 XXXX XXX0
P1
1111 1111
TCON TMOD TLO TL1 THO TH1 AUXR CKCONO
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 x001 0100 x00 0000
PO SP DPL DPH PCON
111 1111 0000 0111 0000 0000 0000 0000 00x1 0000
0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

FFh

F7h

EFh

E7h

DFh

D7h

CFh

C7h

BFh

B7h

AFh

A7h

9Fh

97h

8Fh

87h

Program Memory

¢ FLASH memory Program/Code Memory Organization

» Can be reprogrammed in-circuit

» Provides non-volatile data A
storage 64K Bytes
» Allows field upgrades of the internal
8051 firmware Flash
¢ The AT89C51AC3’s program EA = 1
memory consists of 65536 0000

bytes of FLASH

Boot Program Memory

Flash Memory Architecture with ENBOOT=1 (boot mode)

FFFFh oK Bytes FFFFh
Flash memory
boot space
F800h FM1 F800h
FMO FM1 mapped between FFFFh and
F800h when bit ENBOQOT is set in
AUXRT1 register
0000h

Memory space not accessible

Addressing Modes

¢ Eight modes of addressing are available with the 8051

¢ The different addressing modes determine how the operand
byte is selected

Addressing Modes Instruction
Register MOV A,B
Direct MOV 30H,A
Indirect ADD A,@RO
Immediate Constant ADD A,#80H
Relative* SIMP AHEAD
Absolute* AJMP BACK
Long* LIMP FAR_AHEAD
Indexed MOVC A,@A+PC

* Related to program branching instructions

Register Addressing

¢ The register addressing instruction involves information
transfer between registers

¢ Example:
MOV RO, A

¢ The instruction transfers the accumulator content into the RO
register. The register bank (Bank 0O, 1, 2 or 3) must be
specified prior to this instruction.

Lower 128—Register Banks and RAM

Bit-addressable
Area (16 bytes)

o

—_

— T E W A & - 4o I

r.

General
Purpose RAM
(80 bytes)

DATA MEMORY (RAM)
INTERNAL DATA ADDRESS SPACE

il Bit Address

TF

Genera

Furpose

Rl

a0
2F FFIFE|7D | 7C | Ya| 7A| T2 | 78
2E IFITE | |74 | 73| 72| 71| T
20 &GF |BE |60 | GC | 6B | 6A | B9 | &8
2C 67 |66 |65 |64 | &3 | 62 | B1 | &0
28 SF | SE | S0 | 5C | 5B | SA | 59| &8
20 GF |66 |55 |54 | 53| 52 | 51| &0
29 4F | 4E |40 | 40 | 40| 44| 49| S8
28 GF |98 | &85 | s |43 | 42 | 91 | |0
27 SFI3E |30 | 3C | 38| 3] 30| 38
26 aF |38 | 35 | 33 | 33 | 32 | 31| 3D
25 2FJ2E|2D | 2C | 2B | 2A| 20| 28
24 ZF |28 |25 |29 | 23 | 22 | 21| A0
23 iFJ4E|AD | AC | 18| 1A | 12 | 18
2z 17 | 16 15 149 13 12 | 11 | 10
21 OF |OE |OD | OC | OB | D& | 09 | 02
20 OF OB |05 | 04 | O3 | OZ | O7 | DD
iF
1= Bank 3
17

Bank 2
10
oF

Bank 1
0s
o7

0

Defaut Register Bank tar RO - BT

OXFF1 Upper 128 RAM Special Function

(Indirect Addressing Register's
0xa0 Only)y (Direct Addressing Only)
Ox7F ™

{Direct and Indirect

Addressing) Lower 128 RAM
030 {Direct and Indirect
Addressing)

Register Banks
(8 bytes per
bank; 4 banks)

Direct Addressing

¢ This mode allows you to specify the operand by giving its

actual memory address (typically specified in hexadecimal
format) or by giving its abbreviated name (e.g. P3)

Note: Abbreviated SFR names are often defined in a header file

¢ Example:

MOV A, P3 -Transfer the contents of
-Port 3 to the accumulator

MOV A, 020H ;Transfer the contents of RAM
-location 20H to the accumulator

Indirect Addressing

¢ This mode uses a pointer to hold the effective address of the
operand

¢ Only registers RO, R1 and DPTR can be used as the pointer
reqgisters

¢ The RO and R1 registers can hold an 8-bit address, whereas
DPTR can hold a 16-bit address

¢ Examples:

MOV @RO, A ;Store the content of
;accumulator into the memory
;location pointed to by
;register RO. RO could have an
;8-bi1t address, such as 60H.

MOVX A,@DPTR -Transfer the contents from
;the memory location
;pointed to by DPTR Into the
-accumulator. DPTR could have a
:16-bit address, such as 1234H.

Immediate Constant Addressing

¢ This mode of addressing uses either an 8- or 16-bit
constant value as the source operand

¢ This constant is specified in the instruction, rather than in
a register or a memory location

¢ The destination register should hold the same data size
which is specified by the source operand

¢ Examples:

ADD A,#030H ;Add 8-bit value of 30H to
;the accumulator register
;(which 1s an 8-bit register).

MOV DPTR,#0FEOOH ;Move 16-bit data constant
-FEOOH 1nto the 16-bit Data
;Pointer Register.

Relative Addressing

¢

This mode of addressing is used with some type of jump

Instructions, like SJMP (short jump) and conditional jumps
like JNZ

These instructions transfer control from one part of a
program to another

The destination address must be within -128 and +127 bytes

from the current instruction address because an 8-bit offset
IS used (28 = 256)

Example:

GoBack: DEC A ;Decrement A
JINZ GoBack ;1f A 1s not zero, loop back

Absolute Addressing

¢ Two instructions associated with this mode of addressing
are ACALL and AJMP instructions

¢ These are 2-byte instructions where the 11-bit absolute
address Is specified as the operand

¢ The upper 5 bits of the 16-bit PC address are not modified.
The lower 11 bits are loaded from this instruction. So, the
branch address must be within the current 2K byte page of
program memory (21t = 2048)

¢ Example:

ACALL PORT_INIT ;PORT _INIT should be
;located within 2k bytes.

PORT INIT: MOV PO, #OFH ;PORT_INIT subroutine

Long Addressing

¢ This mode of addressing is used with the LCALL and LIMP
Instructions

¢ Itis a 3-byte instruction and the last 2 bytes specify a 16-bit
destination location where the program branches

¢ It allows use of the full 64 K code space

¢ The program will always branch to the same location no
matter where the program was previously

¢ Example:

LCALL TIMER INIT ;TIMER _INIT address (16-bits
;long) 1s specified as the
;operand; In C, this will be a
;Ffunction call: Timer_Init().

TIMER_INIT: ORL TMOD,#01H ;TIMER_INIT subroutine

Indexed Addressing

¢

¢

The Indexed addressing is useful when there is a need to retrieve data
from a look-up table

A 16-bit register (data pointer) holds the base address and the
accumulator holds an 8-bit displacement or index value

The sum of these two registers forms the effective address for a JMP or
MOVC instruction

Example:
MOV A,#08H ,Offset from table start
MOV DPTR,#01FO0OH ;Table start address
MOVC A,@A+DPTR ,Gets target value from the table
;start address + offset and puts 1t
;in A

After the execution of the above instructions, the program will branch to
address 1FO8H (1FOOH+08H) and transfer into the accumulator the data
byte retrieved from that location (from the look-up table)

Instruction Types

¢ The 8051 instructions are divided into five functional groups:
» Arithmetic operations
» Logical operations
» Data transfer operations
» Boolean variable operations
» Program branching operations

Arithmetic Operations

¢ With arithmetic instructions, the 8051 CPU has no special knowledge of
the data format (e.g. signed binary, unsigned binary, binary coded

decimal,

ASCII, etc.)

¢ The appropriate status bits in the PSW are set when specific conditions
are met, which allows the user software to manage the different data

formats
Mnemonic Description

ADD A Rn A=A+ [Rn]

ADD A, direct A=A+ [direct memory]

ADD A @RI A= A+ [memory pointed to by Ri]
ADD A Fdata A=A+ immediate data
ADDC ARn | A=A+[Rnj+CY

ADDC A direct A= A+ [direct memaory] + CY
ADDC AER A= A+ [mamory pointed to by Ri] + CY
ADDC & 3ata A=A+ immediate data = CY
SUBE A Rn A=A-[Rn]-CY

SUBE A, direct A=A [direct memaory] - CY
SUBE A @R A=A [@RI] - CY
"SUBE A #dala A= A - immediale data - CY
NG A A=A+

INC Rn [Rn] = [Rn] +1

IMC direct [direct] = [direct] +1
INC_@Fi [@Ri] = [@Ri] + 1

DEC A A=A

DEC Hn |[Rn]=[Rn]-1

DEC direct [direct] = [direct] - 1

DEC @R [E@Ri] = [@E@Ri] -1

MUL AB Multiply A & B

Dr AB Divide & by B

LA A Decimal adjust A

¢ [@RIi]implies contents of
memory location pointed to by
ROor R1

¢ Rnrefers to registers RO-R7 of

the currently selected register
bank

Logical Operations

¢ Logical instructions perform
Boolean operations (AND,
OR, XOR, and NOT) on
data bytes on a bit-by-bit
basis

¢ Examples:

ANL A, #02H ;Mask bit 1
ORL TCON, A ;TCON=TCON-OR-A

Mnemonic Description
ANL A, Rn A=A &[Rn]
AML A, direct A= A & [direct memaory]
ANL AER A=A & [memary pointed to by R
AML A #data A= A L immediate data
AML direct A |direct] = [direct] & A
AN direct #data |direct] = [direct] & immediaie data
ORL A, Rn A=A OR [Rn]
ORL A, direct A=A OR jdirect]
ORL AR A=A OR @RI
ORL A#dala A=A OR immediate dala
CRL direct & |direct} = [direct] OR A
ORL direct #data |direct] = [direct] OR immediate data
XRL A, Rn A= A XOR [Rn]
XRL A, direct A= 4 KOR [direct memory]
XRL AR A= AXDR [@Ri]
KRL A gdata A=A KO immediate data
*RL direct & [diract] = [direct] XOR A
*RL direct #data |direct] = [direct] XOR immediate data
CLR A Clear A
CPL A Complemant &
FL A Fotate A left
RLC A Fotate A left (through)
RRE A Rotate A right
RRC A Fotate A right (through ©)
SVWAR A Swap mibbles

Data Transfer Instructions

¢ Data transfer instructions can be
used to transfer data between an
internal RAM location and an SFR
location without going through the
accumulator

¢ ltis also possible to transfer data
between the internal and external
RAM by using indirect addressing

¢ The upper 128 bytes of data RAM
are accessed only by indirect
addressing and the SFRs are
accessed only by direct addressing

OxFF

{=B0
rk

R
lx2F

1E 4]
OxiF

0x00

DATA MEMORY [RAM)
INTERNAL DATA ADDRESS SPACE

Upper 128 RAM
(Indeneat Addressang
Cnlyl

(Direct Addressing Only)

Speacial Funchon
Registars

[Direct and Indirect
Addressing)

Bit Adoressabls

General Purpose

Registers

Lower 128 RAM

. [Dimact and Indinessct
* Addressing)

Mnemonic

Description

MOV @RI, direct

[@RI] = [direct]

MOV @RI, #data

[@Ri] =immediate data

MOV DPTR, #data 16

[DPTR] =immediate data

MOVC A ,@A+DPTR

A = Code byte from [@A+DPTR]

MOVC A @A+PC

A = Code byte from [@A+PC]

MOVX A ,@Ri

A = Data byte from external ram [@Ri]

MOVX A,@DPTR

A = Data byte from external ram [@DPTR]

MOVX @Ri, A

External[@Ri] = A

MOVX @DPTR,A

External[@DPTR] = A

PUSH direct Push into stack

POP direct Pop from stack

XCH A,Rn A =[Rn], [Rn] = A

XCH A, direct A = [direct], [direct] = A
XCH A, @RI A = [@Rn], [@Rn] = A
XCHD A, @RI Exchange low order digits

Boolean Variable Instructions

M . D . .
¢ The 8051 processor can perform nemonic escription
single bit operations CLR C Clear C
¢ The operations include set, clear, CLR bt Clear direct bit
and, or and complement instructions | 3E™8 € Set C
¢ Also included are bit-level moves or | 2518 Pt Set direct bit
conditional jump instructions cpL C Complement c
¢ All bit accesses use direct CPL_bit Complement direct bit
addressing ANL Cbit AND bit with C
ANL C,/bit AND NOT bit with C
P1es. ORL C,bit OR NOT bit with C
MOV C,bit MOV bitto C
SETB TRO ;Start TimerO. MOV _ bitC MOV C to bit
_ JC rel Jump if C set
POLL: JNB TRO, POLL ;Wait | -
till timer overflows e e Jump TE not oef
) JB bitrel Jump if specified bit set
JNB bit,rel Jump if specified bit not set
JBC bitrel ?f specified bit set then clear it and
jump

Program Branching Instructions

¢ Program branching
Instructions are used to
control the flow of program
execution

¢ Some instructions provide
decision making capabillities
before transferring control
to other parts of the
program (conditional
branches).

Mnemonic

Description

ACALL addrll

Absolute subroutine call

LCALL addrl6

Long subroutine call

RET Return from subroutine

RETI Return from interrupt

AJMP addrll Absolute jump

LIMP addrl6 Long jump

SIMP rel Short jump

JMP @A+DPTR Jump indirect

JZz rel Jump if A=0

JNZ el Jump if ANOT=0

CIJNE A.direct,rel

CINE A#data,rel _

GINE Rn#datarel Compare and Jump if Not Equal
CIJNE @Ri#data,rel

DINZ Rn,rel _

DINZ directrel Decrement and Jump if Not Zero
NOP No Operation

Appendix

8051 Instruction

Arithmetic Operations

¢ [@RI] implies contents
of memory location
pointed to by RO or R1

¢ Rn refers to registers
RO-R7 of the currently
selected register bank

Mnemonic Description
ADD A Rn A=A+ [Rn]
ADD A, direct A= A+ [direct memiory]
ADD A@Ri A=A+ [memory pointed to by Ri
ADD A #data A=A + immediate data
ADDC ARn A=A+ [Rn] +CY
ADDC A, direct A= A+ [direct memory] + CY
ADDC A @R A= A+ [memory pointed to by Ri] + CY
ADDC & #ata A= A+ immediate data + CY
SUBB ARn A=A-[Rn]-CY
SUBB A, direct A=A [direct memory] - CY
SUBB AG@RI A=A @RI - CY
sUBE A#data A=A - immediale data - CY
INC A, A=A+
IMC Rn |[Rn] = [Rn] +1
INC direct [direct] = [direct] +1
INC &R [E@Ri] = [@Fi] +1
DEC A A=A
DEC Rn |[Rn]=[Rn]-1
DEC direct [direct] = [direct] - 1
DEC @Ri [E2Ri] = [@Ri] - 1
MUL AB Multiply A & B
Div AB Divida A by B
Cid A Decirmal adjust A

ADD A,<source-byte> ADDC A,<source-byte>

¢ ADD adds the data byte specified by the source operand to
the accumulator, leaving the result in the accumulator

¢ ADDC adds the data byte specified by the source operand,
the carry flag and the accumulator contents, leaving the
result in the accumulator

¢ Operation of both the instructions, ADD and ADDC, can
affect the carry flag (CY), auxiliary carry flag (AC) and the
overflow flag (OV)
» CY=1 Ifthereis a carryoutfrom bit 7; cleared otherwise

» AC =1 Ifthereis a carryout from the lower 4-bit of Ai.e. from bit 3;
cleared otherwise

» OV=1 Ifthe signed result cannot be expressed within the number
of bits in the destination operand; cleared otherwise

SUBB A,<source-byte>

¢

SUBB subtracts the specified data byte and the carry flag together from
the accumulator, leaving the result in the accumulator

CY=1 If a borrow is needed for bit 7; cleared otherwise
AC =1 If a borrow is needed for bit 3, cleared otherwise

ov=1 If a borrow is needed into bit 6, but not into bit 7, or into bit 7,
but not into bit 6.

Example:

The accumulator holds OC1H (11000001B), Register1 holds 40H
(01000000B) and the CY=1.The instruction,

SUBB A, R1

gives the value 70H (01110000B) in the accumulator, with the CY=0 and
AC=0 but OV=1

INC <byte>

¢ Increments the data variable by 1. The instructionis used in register,
direct or register direct addressing modes

¢ Example:
INC 6FH

If the internal RAM location 6FH contains 30H, then the instruction
Increments this value, leaving 31H in location 6FH

¢ Example:
MOV R1, #5E
INC R1
INC (OR1

¢ If R1=5E (01011110) and internal RAM location 5FH contains 20H, the
Instructions will result in R1=5FH and internal RAM location 5FH to
iIncrement by one to 21H

DEC <byte>

¢ The data variable is decremented by 1

¢ The instruction is used in accumulator, register, direct or
reqgister direct addressing modes

¢ Adata of value O0H underflows to FFH after the operation

¢ No flags are affected

INC DPTR

¢ Increments the 16-bit data pointer by 1
¢ DPTR is the only 16-Dbit register that can be incremented

¢ The instruction adds one to the contents of DPTR directly

MUL AB

¢ Multiplies A & B and the 16-Dbit result stored in [B15-8], [A7-0]

¢ Multiplies the unsigned 8-bit integers in the accumulator and the B
register

¢ The Low order byte of the 16-bit product will go to the accumulator
and the High order byte will go to the B register

¢ If the product is greater than 255 (FFH), the overflow flag is set;
otherwise it is cleared. The carry flag is always cleared.

¢ If ACC=85 (55H) and B=23 (17H), the instruction gives the product
1955 (07A3H), so B is now 07H and the accumulator is A3H. The
overflow flag is set and the carry flag is cleared.

DIV AB

¢ Divides Aby B

¢ The integer part of the quotient is stored in A and the
remainder goes to the B register

¢ If ACC=90 (5AH) and B=05(05H), the instruction leaves 18
(12H) in ACC and the value 00 (OOH) in B, since 90/5 =18
(quotient) and 00 (remainder)

¢ Carry and OV are both cleared

¢ If B contains O0OH before the division operation, then the
values stored in ACC and B are undefined and an overflow
flag is set. The carry flag Is cleared.

DA A

¢ This is a decimal adjust instruction

¢ It adjusts the 8-bit value in ACC resulting from operations
like ADD or ADDC and produces two 4-bit digits (in packed
Binary Coded Decimal (BCD) format)

¢ Effectively, this instruction performs the decimal conversion
by adding O0OH, 06H, 60H or 66H to the accumulator,
depending on the initial value of ACC and PSW

¢ If ACC bits A3-0 are greater than 9 (xxxx1010-xxxx1111), or
If AC=1, then a value 6 Is added to the accumulator to
produce a correct BCD digit in the lower order nibble

¢ If CY=1, because the high order bits A7-4 is now exceeding
O (1010xxxx-1111xxxX), then these high order bits will be
iIncreased by 6 to produce a correct proper BCD in the high
order nibble but not clear the carry

Logical Operations

Mnemonic Description
ANL & Rn A=A L[Rn]
ANL A, direct A=A & [direct memory]
ANL AER A=A & [memory pointed to by Ri]
AMNL A #data A= A & immediate data
AML direct A [direct] = [direct] & A
AML direct #data [direct] = [direct] & immediate data
ORL A, Rn A=A OR [Rn)
DORL A, direct A=A OR [direct]
ORL AR A=A OR @RI
ORL Afdata A=A OR immediate dala
CRL direct & [direct] = [direct] OR A
CRL direct #data [direct] = [direct] OR immediate data
AFRL A, Rn A= AKDR [Rn]
#RL A direct A=A KOR [direct memaory]
KRL AR A= AXDR [@Ri|
AHL A sdatas A=A KOR immediate data
#RL direct & [diract] = [direct] XOR A
HRL direct #data [direct] = [direct] XOR immediate data
CLR A Clear A
CPL A Complemeant &
RL A Rotate A left
RLC A Rotate A left (through ©)
RR A Fotate A right
RRC A Fatate A right (through ©)
SWWAR A Swap nibbles

¢ Logical instructions perform Boolean operations (AND,
OR, XOR, and NOT) on data bytes on a bit-by-bit basis

ANL <dest-byte>,<source-byte>

¢ This instruction performs the logical AND operation on the
source and destination operands and stores the result in the
destination variable

¢ No flags are affected

¢ Example:
ANL A,R2

If ACC=D3H (11010011) and R2=75H (01110101), the result
of the instruction is ACC=51H (01010001)

¢ The following instruction is also useful when there is a need
to mask a byte

¢ Example:
ANL P1,#10111001B

ORL <dest-byte>,<source-byte>

¢ This instruction performs the logical OR operation on the

source and destination operands and stores the result in the
destination variable

¢ No flags are affected

¢ Example:
ORL A,R2

If ACC=D3H (11010011) and R2=75H (01110101), the result
of the instruction is ACC=F7H (11110111)

¢ Example:
ORL P1,#11000010B

This instruction sets bits 7, 6, and 1 of output Port 1

XRL <dest-byte>,<source-byte>

¢ This instruction performs the logical XOR (Exclusive OR)
operation on the source and destination operands and
stores the result in the destination variable

¢ No flags are affected

¢ Example:
XRL A,RO

If ACC=C3H (11000011) and RO=AAH (10101010), then the
Instruction results in ACC=69H (01101001)

¢ Example:
XRL P1,#00110001

This instruction complements bits 5, 4, and O of
output Port 1

CLR A and CPL A

CLR A

¢ This instruction clears the accumulator (all bits set to 0)
¢ No flags are affected

¢ If ACC=C3H, then the instruction results in ACC=00H

CPL A

¢ This instruction logically complements each bit of the
accumulator (one’s complement)

¢ No flags are affected

¢ If ACC=C3H (11000011), then the instruction results in
ACC=3CH (00111100)

RL A

¢ The 8 hits in the accumulator are rotated one bit to the left.
Bit 7 Is rotated into the bit O position.

¢ No flags are affected

¢ If ACC=C3H (11000011), then the instruction results In
ACC=87H (10000111) with the carry unaffected

RLC A

¢ The instruction rotates the accumulator contents one bit to
the left through the carry flag

¢ Bit 7 of the accumulator will move into carry flag and the
original value of the carry flag will move into the Bit O
position

¢ No other flags are affected

¢ IfACC=C3H (11000011), and the carry flag is 1, the
Instruction results in ACC=87H (10000111) with the carry
flag set

RR A

¢ The 8 bits in the accumulator are rotated one bit to the right.
Bit O Is rotated into the bit 7 position.

¢ No flags are affected

¢ If ACC=C3H (11000011), then the instruction results In
ACC=E1H (11100001) with the carry unaffected

RRC A

¢ The instruction rotates the accumulator contents one bit to
the right through the carry flag

¢ The original value of carry flag will move into Bit 7 of the
accumulator and Bit O rotated into carry flag

¢ No other flags are affected

¢ IfACC=C3H (11000011), and the carry flag is O, the

Instruction results in ACC=61H (01100001) with the carry
flag set

SWAP A

¢ This instruction interchanges the low order 4-bit nibbles
(A3-0) with the high order 4-bit nibbles (A7-4) of the ACC

¢ The operation can also be thought of as a 4-bit rotate
Instruction

¢ No flags are affected

¢ IfACC=C3H (11000011), then the instruction leaves
ACC=3CH (00111100)

Data Transfer Instructions

¢

Data transfer instructions can be used to transfer data
between an internal RAM location and SFR location without
going through the accumulator

It is possible to transfer data between the internal and
external RAM by using indirect addressing

The upper 128 bytes of data RAM are accessed only by
Indirect addressing and the SFRs are accessed only by
direct addressing

Data Transfer Instructions

Mnemonic

Description

MOV @RI, direct

[@RI] = [direct]

MOV @RI, #data

[@Ri] =immediate data

MOV DPTR,#data 16

[DPTR]=immediate data

MOVC A,@A+DPTR

A =Codebytefrom [@A+DPTR]

MOVC A,@A+PC

A = Codebytefrom [@A+PC]

MOVX A,@RI A = Databyte from external ram [@RI]
MOVX A,@DPTR A = Databyte from externalram [@DPTR]
MOVX @RI, A External[@Ri]=A

MOVX @DPTR,A

External[@DPTR] =A

PUSH direct Pushinto stack

POP direct Pop from stack

XCH A,Rn A =[Rn], [Rn] = A

XCH A, direct A =[direct],[direct] = A
XCH A, @Ri A =[@Rn],[@Rn]=A
XCHD A,@Ri Exchangelow order digits

MOV <dest-byte>,<source-byte>

¢ This instruction moves the source byte into the destination location
¢ The source byte is not affected, neither are any other registers or flags

¢ Example:

MOV R1,#60 -R1=60H
MOV A,@R1 - A=[60H]
MOV R2,#61 -R2=61H
ADD A,@R2 - A=A+[61H]
MOV R7,A -R7=A

¢ Ifinternal RAM locations 60H=10H, and 61H=20H, then after the
operations of the above instructions R7=A=30H. The data contents of
memory locations 60H and 61H remain intact.

MOV DPTR, #data 16

¢ This instruction loads the data pointer with the 16-bit
constant and no flags are affected

¢ Example:
MOV ~ DPTR,#1032

¢ This instruction loads the value 1032H into the data pointer,
l.e. DPH=10H and DPL=32H.

MOVC A,QA + <base-reg>

¢ This instruction moves a code byte from program memory into ACC

¢ The effective address of the byte fetched is formed by adding the original 8-bit
accumulator contents and the contents of the base register, which is either the
data pointer (DPTR) or program counter (PC)

¢ 16-bit addition is performed and no flags are affected
¢ The instruction is useful in reading the look-up tables in the program memory

¢ Ifthe PCis used, it is incremented to the address of the following instruction
before being added to the ACC

¢ Example:

CLR A

LOC1: INC A
MOVC A,@A + PC
RET

Look up DB 10H
DB 20H
DB 30H
DB 40H

¢ The subroutine takes the value in the accumulator to 1 of 4 values
defined by the DB (define byte) directive

¢ After the operation of the subroutineit returns ACC=20H

MOV X <dest-byte>,<source-byte>

¢ This instruction transfers data between ACC and a byte of external data
memory

¢ There are two forms of this instruction, the only difference between them
IS whether to use an 8-bit or 16-bit indirect addressing mode to access
the external data RAM

¢ The 8-Dbit form of the MOVX instruction uses the EMIOCN SFR to
determine the upper 8 bits of the effective address to be accessed and

the contents of RO or R1 to determine the lower 8 bits of the effective
address to be accessed

¢ Example:

MOV EMIOCN,#10H ;Load high byte of
;address 1nto EMIOCN.

MOV RO, #34H ;Load low byte of
;address into RO(or R1).
MOVX A,@RO -Load contents of 1034H

-into ACC.

MOV X <dest-byte>,<source-byte>

¢

The 16-bit form of the MOVX instruction accesses the memory location
pointed to by the contents of the DPTR register

Example:
MOV DPTR,#1034H ;Load DPTR with 16 bit
;address to read (1034H).

MOVX A,Q@DPTR -Load contents of 1034H
-into ACC.

The above example uses the 16-bit immediate MOV DPTR instructionto
set the contents of DPTR

Alternately, the DPTR can be accessed through the SFR registers DPH,
which contains the upper 8 bits of DPTR, and DPL, which contains the
lower 8 bits of DPTR

PUSH Direct

¢

This instruction increments the stack pointer (SP) by 1

The contents of Direct, which is an internal memory location or a SFR,
are copied into the internal RAM location addressed by the stack pointer

No flags are affected
Example:
PUSH 22H
PUSH 23H

Initially the SP points to memory location 4FH and the contents of
memory locations 22H and 23H are 11H and 12H respectively. After the
above instructions, SP=51H, and the internal RAM locations 50H and
51H will store 11H and 12H respectively.

POP Direct

¢

This instruction reads the contents of the internal RAM location
addressed by the stack pointer (SP) and decrements the stack pointer
by 1. The data read is then transferred to the Direct address which is an
iInternal memory or a SFR. No flags are affected.

Example:
POP DPH
POP DPL

If SP=51H originally and internal RAM locations 4FH, 50H and 51H
contain the values 30H, 11H and 12H respectively, the instructions
above leave SP=4FH and DPTR=1211H

POP SP

If the above line of instruction follows, then SP=30H. In this case, SP is
decremented to 4EH before being loaded with the value popped (30H)

XCH A,<byte>

¢ This instruction swaps the contents of ACC with the contents
of the indicated data byte

¢ Example:
XCH A,@RO

¢ Suppose RO=2EH, ACC=F3H (11110011) and internal RAM
location 2EH=76H (01110110). The result of the above
Instruction leaves RAM location 2EH=F3H and ACC=76H.

XCHD A,QRI

¢ This instruction exchanges the low order nibble of ACC (bits

0-3), with that of the internal RAM location pointed to by R
register

¢ The high order nibbles (bits 7-4) of both the registers remain
the same

¢ No flags are affected

¢ Example:
XCHD A,@RO

If RO=2EH, ACC=76H (01110110) and internal RAM location
2EH=F3H (11110011), the result of the instruction leaves
RAM location 2EH=F6H (11110110) and

ACC=73H (01110011)

Boolean Variable Instructions

¢ The 8051 processor can
perform single bit operations

¢ The operations include set,
clear, as well as and, or and
complement instructions

¢ Also included are bit—level
moves or conditional jump
Instructions

¢ All bit accesses use direct
addressing

Mnemonic Description
CLR C Clear C
CLR it Clear direct bit
SETB C SetC
SETB bit Set direct bit
CPL C Complement c
CPL Dbit Complement direct bit
ANL C,bit AND bit with C
ANL C,/bit AND NOT bit with C
ORL C,bit OR bit with C
ORL C,/bit OR NOT bit with C
MOV C,bit MOV bitto C
MOV bit,C MOV C to bit
JC rel Jump if C set
JNC rel Jump if C not set
JB bit,rel Jump if specified bit set
JNB bitrel Jump if specified bit not set
JBC bitrel ?f specified bit set then clear it and

jump

CLR <bit>

¢ This operation clears (reset to 0) the specified bit indicated
In the Instruction

¢ No other flags are affected

¢ CLR instruction can operate on the carry flag or any directly-
addressable bit

¢ Example:
CLR P2.7

If Port 2 has been previously written with DCH (11011100),
then the operation leaves the port set to 5CH (01011100)

SETB <bit>

¢ This operation sets the specified bit to 1

¢ SETB instruction can operate on the carry flag or any
directly-addressable bit

¢ No other flags are affected

¢ Example:
SETB C
SETB P2.0

¢ If the carry flag is cleared and the output Port 2 has the
value of 24H (00100100), then the result of the instructions
sets the carry flag to 1 and changes the Port 2 value to 25H
(00100101)

CPL <bit>

¢ This operation complements the bit indicated by the operand
¢ No other flags are affected

¢ CPL instruction can operate on the carry flag or any directly-
addressable bit

¢ Example:
CPL P2.1
CPL P2.2

¢ If Port 2 has the value of 53H (01010011) before the start of
the instructions, then after the execution of the instructions it
leaves the port set to 55H (01010101)

ANL C, <source-bit>

¢

This instruction ANDs the bit addressed with the Carry bit and stores the resultin
the Carry bit itself

If the source bit is a logical O, then the instruction clears the carry flag; else the
carry flag is left in its original value

If a slash (/) is used in the source operand bit, it means that the logical
complement of the addressed source bit is used, but the source bit itself is not
affected

No other flags are affected

Example:
MOV C,P2.0 ;Load C with i1nput pin
.state of P2.0.
ANL C,P2.7 ;AND carry flag with
b1t 7 of P2.
MOV P2.1,C :Move C to bit 1 of Port 2.
ANL C,/0V ;AND with 1nverse of OV flag.

If P2.0=1, P2.7=0 and OV=0 initially, then after the above instructions,
P2.1=0, CY=0 and the OV remains unchanged, i.e. OV=0

ORL C, <source-bit>

¢ This instruction ORs the bit addressed with the Carry bit and stores the result in
the Carry bit itself

¢ It sets the carry flag if the source bit is a logical 1; else the carry is left in its
original value

¢ If aslash (/) is used in the source operand bit, it means that the logical _
complement of the addressed source bit is used, but the source bit itself is not
affected

¢ No other flags are affected

¢ Example:

MOV C,P2.0 ;Load C with input pin
;State of P2.0.

ORL C,P2.7 ;OR carry flag with
;bit 7 of P2.

MOV P2.1,C ;Move C to bit 1 of
;port 2.

ORL C,/0V ;OR with inverse of OV

;Flag.

MQV <dest-bit>,<source-bit>

¢ The instructionloads the value of source operand bit into the destination
operand bit

¢ One of the operands must be the carry flag; the other may be any
directly-addressable bit

¢ No other register or flag is affected

¢ Example:
MOV P2.3,C

MOV C,P3.3
Mov P2.0,C

¢ If P2=C5H (11000101), P3.3=0 and CY=1 initially, then after the above
Instructions, P2=CCH (11001100) and CY=0.

JC rel

¢ This instruction branches to the address, indicated by the label, if the
carry flag is set, otherwise the program continues to the next instruction

¢ No flags are affected

¢ Example:
CLR C
SUBB A,LRO

JC ARRAY1
MOV A,#20H

¢ The carry flag is cleared initially. After the SUBB instruction, if the value
of A is smaller than RO, then the instruction sets the carry flag and
causes program execution to branch to ARRAY1 address, otherwise it
continues to the MOV instruction.

JNC rel

¢ This instruction branches to the address, indicated by the label, if the
carry flag is not set, otherwise the program continues to the next
Instruction

¢ No flags are affected. The carry flag is not modified.

¢ Example:
CLR C
SUBB A,RO

JNC ARRAY2
MOV A,#20H

¢ The above sequence of instructions will cause the jump to be taken if the
value of A is greater than or equal to RO. Otherwise the program will
continue to the MOV instruction.

JB <bit>,rel

¢ This instruction jumps to the address indicated if the

destination bit is 1, otherwise the program continues to the
next instruction

¢ No flags are affected. The bit tested is not modified.

¢ Example:
JB ACC.7,ARRAY1
JB P1.2,ARRAY2

¢ If the accumulator value is 01001010 and Port 1=57H
(01010111), then the above instruction sequence will cause
the program to branch to the instruction at ARRAY?2

JNB <bit>,rel

¢ This instruction jumps to the address indicated if the

destination bit is O, otherwise the program continues to the
next instruction

¢ No flags are affected. The bit tested is not modified.

¢ Example:
JNB ACC.6,ARRAY1
JNB P1.3,ARRAY2

¢ If the accumulator value is 01001010 and Port 1=57H
(01010111), then the above instruction sequence will cause
the program to branch to the instruction at ARRAY?2

JBC <bit>,rel

¢ If the source bit is 1, this instruction clears it and branches to
the address indicated; else it proceeds with the next
Instruction

¢ The bitis not cleared if itis already a 0. No flags are
affected.

¢ Example:
JBC P1.3,ARRAY1
JBC P1.2,ARRAY2

¢ If P1=56H (01010110), the above instruction sequence will
cause the program to branch to the instruction at
ARRAY?2, modifying P1 to 52H (01010010)

Program Branching Instructions

¢ Program branching
Instructions are used to
control the flow of actions
In a program

¢ Some Iinstructions provide
decision making
capabilities and transfer
control to other parts of the
program, e.g. conditional
and unconditional branches

Mnemonic

Description

ACALL addrll

Absolute subroutine call

LCALL addril6

Long subroutine call

RET Return from subroutine
RETI Return from interrupt
AJMP addrll Absolute jump
LIJIMP addrl6 Long jump
SIMP rel Short jump
JMP @A+DPTR Jump indirect
JZ rel Jump if A=0
JNZ rel Jump if A NOT=0
CINE A.direct,rel
CINE A #data,rel
Compare and Jump if Not Equal
CINE Rn,#data,rel
CINE @Ri,#data,rel
DINZ - Rn,rel Decrementand Jump if Not
DINZ direct,rel zero
NOP No Operation

ACALL addrll

¢ This instruction unconditionally calls a subroutine indicated by the
address

¢ The operation will cause the PC to increase by 2, then it pushes the 16-
bit PC value onto the stack (low order byte first) and increments the
stack pointer twice

¢ The PC is now loaded with the value addrl1 and the program execution
continues from this new location

¢ The subroutine called must therefore start within the same 2 kB block of
the program memory

¢ No flags are affected

¢ Example:
ACALL LOC_SUB

¢ If SP=07H initially and the label “LOC_SUB" is at program memory
location 0567H, then executing the instruction at location 0230H,
SP=09H, internal RAM locations 08H and 09H will contain 32H
and 02H respectively and PC=0567H

LCALL addrl6

¢

¢

This instruction calls a subroutine located at the indicated address

The operation will cause the PC to increase by 3, then it pushes the 16-
bit PC value onto the stack (low order byte first) and increments the
stack pointer twice

The PC is then loaded with the value addrl6 and the program execution
continues from this new location

Since it is a Long call, the subroutine may therefore begin anywhere in
the full 64 kB program memory address space

No flags are affected

Example:
LCALL LOC_SUB

Initially, SP=07H and the label “LOC_SUB?” is at program memory
location 2034H. Executing the instruction at location 0230H,
SP=09H, internal RAM locations 08H and 09H contain 33H

and 02H respectively and PC=2034H

RET

¢ This instruction returns the program from a subroutine

¢ RET pops the high byte and low byte address of PC from
the stack and decrements the SP by 2

¢ The execution of the instruction will result in the program to
resume from the location just after the “call” instruction

¢ No flags are affected

¢ Suppose SP=0BH originally and internal RAM locations OAH
and OBH contain the values 30H and 02H respectively. The
Instruction leaves SP=09H and program execution will
continue at location 0230H

RETI

¢

This instruction returns the program from an interrupt
subroutine

RETI pops the high byte and low byte address of PC from
the stack and restores the interrupt logic to accept additional
Interrupts

SP decrements by 2 and no other registers are affected.
However the PSW is not automatically restored to its pre-
Interrupt status

After the RETI, program execution will resume immediately
after the point at which the interrupt is detected

Suppose SP=0BH originally and an interrupt is detected
during the instruction ending at location 0213H

» Internal RAM locations OAH and OBH contain the values 14H and
02H respectively

» The RETI instruction leaves SP=09H and returns
program execution to location 0234H

AJMP addrll

¢ The AJMP instruction transfers program execution to the
destination address which is located at the absolute short
range distance (short range means 11-bit address)

¢ The destination must therefore be within the same 2kB block
of program memory

¢ Example:
AJMP NEAR

¢ If the label NEAR is at program memory location 0120H, the

AJMP instruction at location 0234H loads the PC with
0120H

LIMP addrl6

¢ The LIMP instruction transfers program execution to the
destination address which is located at the absolute long
range distance (long range means 16-bit address)

¢ The destination may therefore be anywhere in the full 64 kB
program memory address space

¢ No flags are affected

¢ Example:
LIJMP FAR_ADR

¢ Ifthe label FAR_ADR is at program memory location 3456H,

the LIMP instruction at location 0120H loads the PC
with 3456H

SIJMP rel

¢ This is a short jump instruction, which increments the PC by 2
and then adds the relative value ‘rel’ (signed 8-bit) to the PC

¢ This will be the new address where the program would branch
to unconditionally

¢ Therefore, the range of destination allowed is from -128 to
+127 bytes from the instruction

¢ Example:
SIMP RELSRT

¢ Ifthe label RELSRT Is at program memory location 0120H
and the SIMP instruction is located at address 0100H,
after executing the instruction, PC=0120H.

JMP @A + DPTR

¢ This instruction adds the 8-bit unsigned value of the ACC to the 16-bit
data pointer and the resulting sum is returned to the PC

¢ Neither ACC nor DPTR is altered
¢ No flags are affected

¢ Example:
MOV ~ DPTR, #LOOK TBL
JUP @A + DPTR
LOOK TBL: AJMP LOCO
AJMP LOC1
AJMP LOC2

If the ACC=02H, execution jumps to LOC1

¢ AJMP is a two byte instruction

JZ rel

¢

This instruction branches to the destination address if
ACC=0; else the program continues to the next instruction

The ACC is not modified and no flags are affected

Example:
SUBB A,#20H
JZ LABEL1
DEC A

If ACC originally holds 20H and CY=0, then the SUBB
Instruction changes ACC to O0OH and causes the program
execution to continue at the instruction identified by
LABEL1; otherwise the program continues to the DEC
Instruction

JNZ rel

¢ This instruction branches to the destination address if any
bit of ACC is a 1, else the program continues to the next
Instruction

¢ The ACC is not modified and no flags are affected

¢ Example:
DEC A
JINZ LABEL2
MOV RO, A

¢ If ACC originally holds O0H, then the instructions change
ACC to FFH and cause the program execution to continue
at the instruction identified by LABELZ2; otherwise the
program continues to MOV instruction

CJINE <dest-byte>,<source-byte>,rel

¢

This instruction compares the magnitude of the dest-byte and the
source-byte and branches if their values are not equal

The carry flag is set if the unsigned dest-byte is less than the unsigned
Integer source-byte; otherwise, the carry flag is cleared

Neither operand is affected
Example:
CINE R3,#50H,NEQU
...... ;R3 = 50H
NEQU: JC LOC1 ;1 R3 < 50H
...... :R7 > 50H

LOC1: ;R3 < 50H

DINZ <byte>,<rel-addr>

¢ This instruction is "decrement jump not zero”

¢ It decrements the contents of the destination location and if the resultin
value is not 0, branches to the address indicated by the source operan

¢ An original value of OOH underflows to FFH
¢ No flags are affected

¢ Example:
DIJNZ 20H,LOC1

DIJNZ 30H,LOC2
DINZ 40H,LOC3

¢ Ifinternal RAM locations 20H, 30H and 40H contain the values 01H,
5FH and 16H respectively, the above instruction sequence will cause a
jump to the instructionat LOC2, with the values 00H, 5EH, and 15H in
the 3 RAM locations.

» Note, the first instruction will not branch to LOC1 because the [20H] = O0H,
hence the program continues to the second instruction

» Only after the execution of the second instruction (where the
location [30H] = 5FH), then the branching takes place

NOP

¢ This is the no operation instruction
¢ The instruction takes one machine cycle operation time
¢ Hence it is useful to time the ON/OFF bit of an output port
¢ Example:
CLR P1.2
NOP
NOP
NOP
NOP
SETB P1.2

¢ The above seqguence of instructions outputs a low-going output pulse on
bit 2 of Port 1 lasting exactly 5 cycles.
» Note a simple SETB/CLR generates a 1 cycle pulse, so four additional

cycles must be inserted in order to have a 5-clock
pulse width

Thanks to www.silabs.com/MCU

	Introduction to Microprocessors
	8051 Instruction Set
	Introduction
	8051 Architecture Review
	8051 Data Memory (RAM)
	Lower 128—Register Banks and RAM
	Special Function Registers (SFRs)
	AT89C51AC3 Special Function Registers
	Program Memory
	Slide Number 10
	Addressing Modes
	Register Addressing
	Lower 128—Register Banks and RAM
	Direct Addressing
	Indirect Addressing
	Immediate Constant Addressing
	Relative Addressing
	Absolute Addressing
	Long Addressing
	Indexed Addressing
	Instruction Types
	Arithmetic Operations
	Logical Operations
	Data Transfer Instructions
	Boolean Variable Instructions
	Program Branching Instructions
	Appendix
	Arithmetic Operations
	ADD	A,<source-byte> ADDC A,<source-byte>
	SUBB A,<source-byte>
	INC	<byte>
	DEC	 <byte>
	INC	DPTR
	MUL	 AB
	DIV AB
	DA A
	Logical Operations
	ANL	<dest-byte>,<source-byte>
	ORL	<dest-byte>,<source-byte>
	XRL	<dest-byte>,<source-byte>
	CLR A and CPL A
	RL A
	RLC	 A
	RR A
	RRC	 A
	SWAP A
	Data Transfer Instructions
	Data Transfer Instructions
	MOV	 <dest-byte>,<source-byte>
	MOV	 DPTR, #data 16
	MOVC A,@A + <base-reg>
	MOVX <dest-byte>,<source-byte>
	MOVX <dest-byte>,<source-byte>
	PUSH Direct
	POP	Direct
	XCH	 A,<byte>
	XCHD A,@Ri
	Boolean Variable Instructions
	CLR	<bit>
	SETB <bit>
	CPL	<bit>
	ANL	C, <source-bit>
	ORL	C, <source-bit>
	MOV	 <dest-bit>,<source-bit>
	JC rel
	JNC	rel
	JB <bit>,rel
	JNB	<bit>,rel
	JBC	<bit>,rel
	Program Branching Instructions
	ACALL addr11
	LCALL addr16
	RET
	RETI
	AJMP addr11
	LJMP addr16
	SJMP rel
	JMP	@A + DPTR
	JZ rel
	JNZ	rel
	CJNE <dest-byte>,<source-byte>,rel
	DJNZ <byte>,<rel-addr>
	NOP
	Thanks to www.silabs.com/MCU

