8051 FLAGS (INTRO)

® When the 8051’s processor enters certain states, it raises ‘flags’ to
Indicate these states.
® These flags are stored in the Program Status Word register (PSW),
which uses six of the register’s eight bits.
®* We’'ll explore some examples of these flags.

Program Status Word structure

PSW.7| PSW.6 | PSW.5 | PSW.4 | PSW.3 | PSW.2 | PSW.1 | PSW.0_
CY AC FO RS1 RSO oV = P

Eﬂm Flag name and description

7 C (or CY) Carry; Used in arithmetic, logic and Boolean operations

m AC Auxiliary carry ; useful only for BCD arithmetic

m FO Flag O; general purpose user flag

m RS1 Register bank selection bit 1

B RSO Register bank selection bit 0

- RS1 RSO

| 0 0 Bank 0

- 0 1 Bank 1

| 1 0 Bank 2

- 1 1 Bank 3

m oV Overflow; used in arithmetic operations

_ - Reserved; may be used as a general purpose flag

u Parity; setto 1 if A has odd number of ones, otherwise reset
P to 0

A SIMPLE ASSEMBLY

HIGH LEVEL
GOAL: Turn
a light on and
off every one
ms. (1Ims on,
1ms off)

START:

MOV P1,A

Let's connect the IOAAW:NE=201015

LED to Port 1 and EY[O\YAR MR\
then toggle Port 1
between 0 and 1

every 1 ms.

SIJMP START

The biggest
challenge will
probably be figuring
out how to get a
good precise timer to
let the light stay
on/off for 1 ms

MOV A,#OFFH

- -Move
- -Move

- -TODO:

- -Move
- -Move

- - TODO:

> >Jump

LANGUAGE PROGRAM

OxXFF(1) to accumulator
accumulator value to Pl

delay for 1 ms!

Ox0(0) to accumulator
accumulator value to Pl

delay for 1 ms again

back to “START?’

SUBROUTINES

® In high-level languages, we often use functions to compartmentalise
blocks of code that we might reuse.
® This allows us to avoid copy+paste of code.
® Somewhat similar to this is the assembly language concept of subroutines
® We can jump to particular blocks of code, execute them, and then jump
back to our ‘main’ program.
® |Let’s try to do this with the 1 ms delay...

//pseudocode, high-level example of port writing
main(){
Portl.write(HIGH);
delaylMs(); //call function routine
Portl.write(LOW);
delaylMs();

}

function delaylMs(){
//code to make the CPU wart for 1 ms

}

SUBROUTINES

START:

MOV A,#OFFH ; -Move OxFF(1) to accumulator
MOV P1,A ; -Move accumulator value to Pl
ACALL DELAY ;-Calls subroutine at “delay’
MOV A,#OOH , -Move 0x0(0) to accumulator
MOV P1,A ; -Move accumulator value to Pl
ACALL DELAY ; -Delay for another 1 ms

SIJMP START ;-Jump back to “START’

D] =1 WA\ ;-1 ms delay Subroutine

MOV R6,#250D ; -Place 0d250 1nto Register 6
MOV R7,#250D ; -Place 0d250 1nto Register 7

DEL1: DINZ R6,DEL1 ;;DJINZ: Decrement R6 & jump 1f not O
DEL2: DINZ R7,DEL2 ;;DINZ 1s 2-cycles, 2uS to run. 2X500us=1ms
RET ; sReturn to ACALL

UNDERSTANDING HEX
FILES

® Once written and carefully checked over, the assembly language program
IS assembled.
® We'll use the KEIL IDE to do this.
® The result is a Hex file (.hex), with opcodes and accompanying data
represented as hex numbers.
® This hex file is in the Intel Hex format.
® More good info about this here:
https://www.edsim51.com/intelHex.html
® If you are going to do a lot of Hex file editing, a dedicated hex editor Is
recommended: https://mh-nexus.de/en/hxd/

https://www.edsim51.com/intelHex.html
https://mh-nexus.de/en/hxd/

UNDERSTANDING HEX
FILES

Length of
line in
bytes

Normal lines end

with 00; end-of-file Opcode + data
Is 01

210000000 1136 B6
210001000 7445 33
210002000 1150 31

210003000 1150 0C
210004000 C2A2 22 75
209005000 AE
00000001

1-byte instructions (PC 2-byte instructions (PC Checksum: all
Increments 1 byte past Increments 2 bytes past bytes on the line
these) these) add up to this

value

LAB 1 NOTES

® Turn In: a commented Hex file at start of your Labl.
® This needn’t have many additional notes. 1 or 2
lines up at the top explaining the changes that you
have made.
® A brief comment on each line explaining the line-
by-line changes.

MEMORY: RAM & STORAGE

ADDRESS
BUS

ADDRESS
BUS

PROGRAM

MEMORY

DATA
BUS

CPU

DATA
~ BUS

® Computers with a Harvard Architecture have
separate program and data memories.
® Microcontrollers have a ‘volatile’ data memory.
® RAM, loses state when the system resets.
® They have a non-volatile program memory.
® Retains state in power-off conditions.
® Historically, this was some form of ROM
(read only memory), originally programmable
only once.
® Modern microcontrollers (including the
C8051F020) use flash memory for program
memory.
® Flash memory may be reprogrammed a
relatively large number of times, but not
during program execution.
® Program memory is often embedded on
the microcontroller, but may also
consist of external memory modules.

loader
2kx8

I1

One of the major
variations that different
binary-compatible 8051

clones have is the
addition of more
program memory than
the original 4K ROM

Timer 0
Timer 1

Parallel 1/0O Ports and Ext. Bus

Port 1+°ort 2|Port 3|Port 4

C8051F020 variant
of 8051.:
256 bytes of RAM

C8051F020 variant of

8051:

64KB of Flash ProgMem

SPI
Interface

ROM & FLASH: PROGRAM MEMORY

® The C8051F020 has 64 KB of internal flash.
® See page 24 of the data sheet (C8051F02X.pdf) for much more
Information.
®* While most programs are stored to this in-system-programmable flash...
¢ ...the C8051F020 has 2KBytes of EEPROM
® The EEPROM may be edited programatically, and is sometimes
used to store variables that need to be retained after a reboot cycle.

FFFFh FFFFh

Reserved for
bootloader

F800h

INTERNAL FLASH,

64 K Bytes

INTERNAL FLASH,
0000h 64 K Bytes

0000h

FLASH-BASED BOOTLOADER

® Early microcontrollers (and some contemporary basic/specialised ones) were
programmed using custom programmers.
® These required the microcontroller (or the microcontroller’'s data ROM) to
be removed from the circuit and programmed with high voltages.
® Contemporary microcontrollers can be programmed ‘in-system,’ allowing for
simple rapid development and iteration/revision of firmware.
® As flash memory requires some specific steps to be programmed, a
specific ‘serial bootloader’ may be used to allow the flash to be
programmed in-system via the microcontroller’s serial port.

FFFFh

—_ — 2K Bytes IAP
bootloader

| Boot Loader F800h FM1

64K Bytes |

Flash memor FM1 mapped between F800h and FFFFh
when API called

VOLATILE MEMORY: RAM

® Originally, the 8051 had 128 Bytes of volatile RAM.
® The AT89C51AC3 has a whopping 256 Bytes alongside 2 KBytes of
additional RAM (called the “expanded RAM segment”, ERAM).
® This RAM is subdivided into a number of blocks, some general purpose
and some with very specific functions.

RAM: ERAM:
256x8 bits 2048 bits

UART RAM Flash Boot EE ERAM
256x8 64k x 8|[loader||PROM 2048
2kx8 2kx8

C51
CORE

8051 DATA MEMORY MAP

FFh FFh

00h 80h

80h

LOWER 128 BYTES,
NOT TO SCALE

8051 ADDRESSING MODES

® A key part of computer operation involves the accessing of memory; this may
be done on the 8051 using five main approaches.

IMMEDIATE
ADDRESSING
MODE

The data is
Included In the
8051
Instruction.

®* MOV A #48H
® The # shows

that the data is
‘immediate’

In a sense, this
data Is hard-
coded into the
Instruction.
Fast but less
flexible.

¢® REGISTER

ADDRESSING
MODE

The data
operand isin a
specified
register.

Only some
registers may
be used: RO
through R7 of
each of the
8051’s banks.

¢* MOV ARY

® Contents of
R7 are
copied to
ACC.

¢ DIRECT

ADDRESSING
MODE

The address of j ®

a location in
RAM is
specified, and
Its contents

are operated
upon. Only
works with
Internal RAM &
SFR’s

¢* MOV A,10H

® Contents of
address
are copied
to ACC.

¢® INDIRECT

ADDRESSING
MODE
Slower: the
contents of a
location of the
address stored
In a register
are fetched.
MOV A @R7
® The @
Indicates
an address
Upper 128
bytes of RAM
are accessible
this way.

¢ INDEXED

ADDRESSING
MODE

Used to step
through data
(as in lookup
tables).

We won't be
exploring this
In depth (and
you won't be
tested on it!),
but see detalls
about the
MOVC

Instruction in
C8051F02xC3.pdf

	8051 FLAGS (INTRO)
	Slide Number 54
	A SIMPLE ASSEMBLY LANGUAGE PROGRAM
	SUBROUTINES
	SUBROUTINES
	UNDERSTANDING HEX FILES
	UNDERSTANDING HEX FILES
	LAB 1 NOTES
	MEMORY: RAM & STORAGE
	THE 8051’S STORAGE
	ROM & FLASH: PROGRAM MEMORY
	FLASH-BASED BOOTLOADER
	VOLATILE MEMORY: RAM
	8051 DATA MEMORY MAP
	8051 ADDRESSING MODES

