Data Structures and Algorithms

XMUT-COMP 103 -2024 T1
Recursion and Algorithm Complexity

Mohammad Nekooel

School of Engineering and Computer Science

Victoria University of Wellington

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 280

Assignment 3

* Hospital simulation
 Tick based simulation
* Queues, priorityqueues, sets, lists of queues, maps,....

* MineSweeper
e recursion!

 MedicalCenter

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 281

Aside: Priority Queues

 Why aren't the Patients in priority order
when waiting in the queue?

Treating Patients Walting Clueues

. Note: BIEEH @

e The front item in the priority queue |Surgery

s always the highest prioriy. BERRERAGERAARERRRARRAREGARA

 Higher priority items tend to be H-ray

i
closerto the flront. | |EE|EEEBEE
:

« But they aren't kept in exact order. g

RRRARERRE

 Priority Queues keep the items in a partially ordered tree structure
— more efficient to add and remove items [O(log n) instead of O(n)]
more details later in the course.

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 282

Analxsing Costs gin general)

How can we determine the costs of a program?

 Time:
* Run the program and count the milliseconds/minutes/days.
e Count number of steps/operations the algorithm will take.

e Space:
* Measure the amount of memory the program occupies.
« Count the number of elementary data items the algorithm stores.

* Applies to Programs or Algorithms? Both.
e programs = “benchmarking”
 algorithms = “analysis”

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 283

What Is a good algorithm?

Obviously needs to do what is expected consistently. However most problems can be
solved in many ways. What is most important?

o Clarity - easy to read/implement
 Efficiency - the cost of running it

Clarity is relatively simple to measure. Find somebody else to read you code.

But how do we measure efficiency of an algorithm?

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 284

Benchmarking: program cost

Measure:
» actual programs, on real machines, with specific input
* measure elapsed time

e System.currentTimeMillis ()
— time from the system clock in milliseconds

« measure real memory usage

Problems:
« what input? = use large data sets
don’t include user input
 other users/processes”? = minimise
average over many runs
* which computer? = specify details

* how to compare cross-platftorm? = measure cost at an abstractlevel

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 285

Analysis: Algorithm “complexity”

* Abstract away from the details of
* the hardware, the operating system

* the programming language, the compiler
* the specific input

* Measure number of “steps” as a function of the data size
e bestcase (easy, but not interesting)
 worstcase (usually easy)
« average case (harder)

* The precise number of steps is not required
e 3.47n%-67n + 53 steps
* 3nlog(n) + 5n - 3 steps

Rather, we are interested in how the cost grows with data size on large data

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 286

Big-O Notation

« “Asymptotic cost”, or “big-O” cost describes how cost grows with large input size

* Only care about large input sets
* Lower-order terms become insignificant for large n

 We care about how cost grows with input size
« Don’t care about constant factors
» Multiplication factors (3, 102, 3 and 12 below) don’t tell us how things “scale up”
* Lower-order terms become insignificant for large n

3.47 n? + 102n + 10064 steps -+ 0O(n?)
3nlog n +12n steps = O(n log n)

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 287

How the different costs grow

100,000
90,000 ——logZ n
80,000 —n
70,000 —-n logn
N\
60,000 —=n"2
N
50,000 ——n"3
N
40,000 —=2"n
30,000 |
20,000
10,000 _ .
O .' @ E—————— |
0 100 200 300 400 500 600 700 800 900 1000

n: size of input

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 288

Big-O classes

« Examples:
 O(1) constant: cost is independent of n : Fixed cost!
* Retrieve/insert in regular arrays, hashmap operations
* O(log n) logarithmic: cost grows by 1, when n doubles : almost constant
* Traversing a binary tree, some divide-conquer algorithms
e O(n) linear: cost grows linearly with n :

* Find a value in array, do something to all elements in an array, adding in the
middle of ArrayList

* O(nlog n) log linear: cost grows a bit more than linear: Slow growth!

* Good sorting algorithms (merge, quick, heap sort). Complex divide-conquer
algorithms

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 289

Big-O classes

« Examples continued:
e O(n?) quadratic: ~ costs x 4 when n doubles: limits problem size
* Do something to all elements in a 2d array. Nested loops
e O(n¢),c>2 polynomial: limits problem size even more
* Do something to all elements in a 3d array. Many nested loops

e O(2M exponential: costs doubles when n increases by 1:
severely limits problem size

* Route finding, e.g. travelling salesman problem
e Super-exponential: e.g.0(n!) don’t even think about it...

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 290

How the different costs grow

e For growing n, the costs grow slower or faster depending on the cost function
[Forrible] [Bad] Fair] [cood] [Excellent]

COSts
(steps)

100,000
90,000
80,000
70,000
60,000
50,000
40,000
30,000
20,000
10,000

0

0 100 200 300 400 500 600 700 800 o0 1000 Size of input (n)

© Peter Andreae, Karsten Lundqgvist, and Mohammad Nekooei

COMP103: 291

I\/Ianageable Qroblem s|zes

 How large can the data be?

* Assume one step takes one microsecond (i.e., 10-° sec) on the computer

* Then the following problem sizes can be handled by an algorithm in a given
Big-O class within a given time unit

Time 1 min 1h
O(n) 10/ 10°
O(n log n) 106 108
O(n?) 104 10°
0(n3) 102 103

O(2") 25 31

1 day
1011

10°

10°

103

36

1 week

1012

1010

10°

104

39

How much is 1
year ? about
1013 half a million sec

1 year

1012

10’

104

44

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 292

What is a “step”?

e Any important actions that are at the centre of the algorithm
e comparing data
* moving data
« anything you consider to be “expensive”
* Doesn’'t depend on size of data

public E remove (int index){
If (index < 0 || index >= count) throw newException();
E ans = data[index];
for (inti=index+1; i< count; i++)
(datali-1]=datali];) — Key Step
count--;
data[count] = null;
return ans;

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 293

What's a step: Pragmatics

e Count the most expensive actions?
e Adding 2 numbers is cheap
« Raisingto a power is not so cheap
« Comparing 2 strings may be expensive
* Reading a line from a file may be very expensive

« Waiting for input from a user or another program may take forever...

« Remember the Big (O) picture

¢ Sometimes we need to know about how the underlying operations are
Implemented in the computer to choose well (NWEN241/342).

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 294

Costs of Standard Collection classes

* ArrayList: O(1): clear, add, set, remove from end:
O(n): add, remove, contains, Collections.reverse, .shuffle
O(n log(n)) Collections.sort,

ArrayDeque: O(1): clear, push, pop, offer, poll, add/remove First/Last:
O(n): contains, remove(obj)

PriorityQueue: O(log(n)): offer, poll

 HashSet: O(1): add, remove, contains
o TreeSet: O(log(n)): add, remove, contains
 HashMap: O(1): clear, containsKey, put, get

But depends on the cost of hashCode

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 295

Example Algorithms

* Finding the Mode of a set of numbers
o Shuffle a List
* Find combinations of items to fill a pallett

* Find permutations of letters to make words.
* (fix the dictionary!)

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 296

Finding the Mode of a list

« Mean = total/count
 Median = middle value, separating top 50% from bottom 50%
e Mode = most frequent number.

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

Algorithm:
» set mode to the first number and modeCountto 1
e for each value in the list:
« step throughthe list to count how many times value occurs in the list
 if count > modeCount then set mode and modeCountto value and count

W hat's the cost if there
are n numbers?

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 298

Mode: the bad way

publicint mode(List<Integer>numbers){

int mode = numbers.get(0); 1x O(1) Analysis

iInt modeCount = 1; 1x O(1)

for (int value : numbers){ -
iInt count = 0; n x O(1)

for (int other : numbers){

If (other==value) { nxn x O(1) _ _
n*n iterations

count++; nxn X O(1)
\ } __ niterations
If (count > modeCount){ n x O(1)
mode = value; 1...nx0(1)
modeCount=count; 1 ...n x O(1)
}

%eturn mode; 1 x O(1) — O (n 2)

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 299

Finding the Mode of a list faster

e Much easier to see If the list Is sorted in order:

ﬂ 23,22,49,25,43,23,5,31,43,2/7,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

 Algorithm

* sort the list
« set mode to first number and modeCountto 1
e setcountto 1
 step through the list from index 1
 if the number is the same as the previous number, then increment count
* else
 if count > modeCount, then set mode and modeCount to previous value and count
e resetcounttol
* if count > modeCount, then set mode and modeCount to previous value and count

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

W hat's the cost if there
are n numbers?

COMP103: 300

Finding the Mode of a list faster

 Algorithm Analysts
« sort the list 1x O(nlog(n))
* set mode to first number and modeCountto 1 1timex O(1)
e setcountto 1 1 timex O(1)
" step through the list from index 1
 iIf number is same as previous number, then n times x O(1)
* Increment count 1...ntimesx O(1)
n iterations— * else
* if count > modeCount, then n...1ltimesx0O(1)
« set mode and modeCount to previous number and count n ... 1 times O(1)
e resetcounttol n...1ltimesxO(1)
o if count > modeCount, then 1timex O(1)

« set mode and modeCount to previous value and count

Total: O(n log(n))

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 301

Finding the Mode of a list even faster

e Count using a map to count without sorting:

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

What's the cost if there
« Algorithm are n numbers?

 for each value in the list
« if the value is in the map, then increment the associated count
* else add the value to the map with an associated count of 1.
 for each key in map,
« if associated count > modeCount, then set mode and modeCount to key and count

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 302

Finding the Mode of a list even faster

 Algorithm

ntimes —

. for each value in the list
 if the value is in map, then
* Increment the associated count

e else

n times

_ * add value to map with associated count =1.
« for each key in map,
« if associated count > modeCount, then

« set mode and modeCount to key and count

Analysis

n x O(1) containskey(key)
1...nx 0O(1) get(..) & put(..)

n...1x0(1) put(key, 1)

O(1) get all keys
n x O(1) get(key)
1...nx O(1)

Total: O(n)

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 304

Shuffle a list

Given a list, put items into a random order

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

e For each position, grab a random item and put it in that position

» add(position, remove(random))
VS
« swap [set(position, set(index, get(position))] or Collections.swap(...)

e Use the built-in shuffle!
 Collections.shuffle(list)

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

Shuffle a list

COMP103: 305

n times

n times

 For each position from n-1 to 0,
e choose a random index < position
* item =remove(index)

_* add(position, item)

e For each position from n-1 to O,
e choose a random index <= position
« swap(index, position)

n xO(1)
n x O(n)
n x O(n)

Total: O(n?)

n x O(1)
n x O(1)

Total: O(n)

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 306

Combinations
e Given a set of n packets of weights w, , ..., w,, and a shipping pallet/container/box
that has size z
« Example:
Packet 1 Packet 3

Packet 2
pueny IR

« Given the target z, what is the largest total weight <= z that can be achieved?

* Example: _
Total Weight

«z2<=107

e 7<=6"7 Total Weight

;

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 307

Combinations — Largest total weight

e Given a set of n packets of weights w, , ..., w,
« Example:

Packet 1 Packet 3

Packet 2
pueny IR

 What is the largest total weight of any combination?
* Example:
* The best combination:

Total Weight
3 4 7 3+4+7=14

o |f all weights are positive, then selecting all packets gives the largest total weight

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 308

Combinations — List all

e Can we list all Total Weight
combinations with their 0 0

respective total weight?
3

Combinations
IS
I . I
h I
I I
\l

10

11
« How many

combinations are of n 7 3
packets are there?

o 2N

o
IN IN
~ ~

14

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 309

Combinations — Selecting Packets

 How can we ensure that we did not forget any combination?
* We just decide for each packet whether it should be selected for the

combination or not

* Yes = “packet selected”, No = “packet not selected”

No
Yes
No
No
Yes

Combinations

Yes
No
Yes

~N oo o1~ WON - O

No
No
Yes
No
Yes
No
Yes
Yes

No
No
No
Yes
No
Yes
Yes
Yes

Total Weight

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 310

How to represent combinations?

« Anything that can be improved?
e For an algorithm we better use 1 and O rather than Yes and No

0 0 0 0 0
1 1 0 0 3
2
S 2 0 1 0 4
S 3 0 0 1 7
§ 4 1 1 0 7
5 1 0 1 10
6 0 1 1 11
7 1 1 1 14

 We use a binary representation for combinations:
« Example: 011 stand for packets 2 and 3

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 311

How to represent combinations?

* Does this idea also work for more than 3 packets?

* Yes, here an example for n = 14:
¢ 10001110011010 stands for the packets 1,5, 6, 7, 10, 11,13

o Step through all numbers from 0 to 111 to try all combinations

e for combnfrom O0to 111
« work out total weight of combination
* if weight <=target and weight > best so far
* remember weight and combn

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 312

Cost of Algorithm with loop

* if n packets, then max combination represented by 2"

« for combn from 1 to max with n packets, max = 2"
« work out total weight of combination O(n) i
 if weight <=target and weight > best so far O(1) _ 2" times

* remember weight and combn O(1)

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 313

Combinations — Can we do better?

 Given a set of n packets of weights w, , ..., w, and a target z

e Example:
Packet 1 Packet 3

 |ldea: Consider two options

* First option: If packet 1 has weight <= target z, then select it and we still have n-1
packets to choose from, but target must be reduced by the weight of packet 1

« Second option: do not select packet 1, then we still have n-1 packets to choose
from, and target is still the same

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 314

Combinations — Can we use recursion?

 |dea: divide the problem (of size n) into two smaller subproblems (of size n-1)
e SO We can use recursion

* First option: If packet 1 has weight <= target z, then select it and we still have n-1
packets to choose from, but target must be reduced by the weight of packet 1

First subproblem of size n-1]

« Second option: do not select packet 1, then we still have n-1 packets to choose
from, and target is still the same

[Second subproblerrée\m

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 315

Combinations

* packet O yes no
e packet 1 yes no
e packet 2 yes no
e packet 3 yes no
* packet 4 yes no
e packet 5 yes no
e packet 6 yes no
e packet 7 yes no
* packet 8 yes no
* packet 9 yes no
* packet 10 yes no

e packet 11 yes no

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 316

Combinations — Using Recursion

 Start with an empty combination
* initialise bestCombination and bestTotal to O;
* Find combinations using additional packets from index O

 To find combinations using additional packets from index ...:

/] first option with first subproblem of size n-1

« if including packeti would still be <= target
 add it to the current combination
« if it beats the current best, then remember total and combination.
 find combinations using additional packets from index i+1... < RECURSIVE CALL
* remove it from the current combination

/[second option with second subproblem of size n-1

 find combinations using additional packets from index i+1... < RECURSIVE CALL

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

COMP103: 317

Cost of Algorithm with recursion

* Cost(n) = cost of finding with n remaining packets to try

 Cost(l) = O(1)

e Cost(n) = O(1) + Cost(n-1) + Cost(n-1)
= 2 Cost(n-1) + O(1)
= 2(2Cost(n-2) + O(1)) + O(1)

The cost approximately doubles when n increase by 1 => O(2"n)

© Peter Andreae, Karsten Lundgvist, and Mohammad Nekooei

	Data Structures and Algorithms�XMUT-COMP 103 - 2024 T1 �Recursion and Algorithm Complexity
	Assignment 3
	Aside: Priority Queues
	Analysing Costs (in general)
	What is a good algorithm?
	Benchmarking: program cost
	Analysis: Algorithm “complexity”
	Big-O Notation
	How the different costs grow
	Big-O classes
	Big-O classes
	How the different costs grow
	Manageable problem sizes
	What is a “step”?
	What’s a step: Pragmatics
	Costs of Standard Collection classes
	Example Algorithms
	Finding the Mode of a list
	Mode: the bad way
	Finding the Mode of a list faster
	Finding the Mode of a list faster
	Finding the Mode of a list even faster
	Finding the Mode of a list even faster
	Shuffle a list
	Shuffle a list
	Combinations
	Combinations – Largest total weight
	Combinations – List all
	Combinations – Selecting Packets
	How to represent combinations?
	How to represent combinations?
	Cost of Algorithm with loop
	Combinations – Can we do better?
	Combinations – Can we use recursion?
	Combinations
	Combinations – Using Recursion
	Cost of Algorithm with recursion

