
© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

Data Structures and Algorithms
XMUT-COMP 103 - 2024 T1

Collections and Stack.

Mohammad Nekooei
School of Engineering and Computer Science

Victoria University of Wellington

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 25

Admin
• Assignment 1 has been released

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 26

Collections: What’s the difference
• Different structures

• No structure – just a collection of values
• Linear structure of values – the order matters
• Set of key-value pairs
• Hierarchical structures
• Grid/table
• ….

• Different constraints
• duplicates allowed/not allowed
• get, put, remove anywhere
• get, put, remove only at the ends, or only at the top, or …
• get, put, remove by position, or by value, or by key, or …
• ….

Bag

Set

Map
List Queue

Stack

Tree

GraphCollection

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 27

Essential structures and constraints:
• Bags:

• No structure

• Sets:
• No structure, no duplicates

• Lists:
• Linear structure of values. Access anywhere (by position)

• Stacks:
• Linear structure of values. Access on at top (Last in => first out)

• Queues:
• Linear structure of values. Add to the tail, remove from front (First in => first out)

• Maps:
• Set of key-value pairs

Bag

Set

Map
List Queue

Stack

Tree

GraphCollection

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 28

Abstract Data Types
Set, Bag, Queue, List, Stack, Map, etc are

Abstract Data Types

• an ADT is a type of data, described at an abstract level:
• Specifies the operations that can be done to an object of this type
• Specifies how it will behave.

• Doesn’t specify how it is implemented underneath – “black box”
• though we will always need some concrete implementation of it.

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 29

Eg: Set ADT
(simple version)

• Conceptual:
• Collection of items with no structure and no duplicates.

• Operations:
• add(value),
• remove(value),
• contains(value)→boolean

• Behaviour:
• A new set contains no values.
• A set will contain a value iff the value has been added to the set

and it has not been removed since adding it.
• A set will not contain a value iff the value has never been added to the set, or it has been

removed from the set and has not been added since it was removed.

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 30

Java Collections Library (in java.util)
Defines interfaces ⇒ Abstract Data Types
and classes:

Collection

Set

SortedSet

List Queue

HashSet LinkedHash
Set TreeSet ArrayList LinkedList PriorityQueue

implements

interfaces ≈ ADTs
(not ordinary classes)

classes

ArrayDeque

Map

Deque
(Queue+Stack)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 31

Java Collections library
Interfaces:

• Collection
= "Bag" (most general)

• List
= ordered collection

• Set
= unordered, no duplicates

• Queue
ordered collection, limited access
(add at one end, remove from other)

• Map
= key-value pairs (or mapping)

• …
Specify the Types:

Classes
• List classes:

ArrayList, LinkedList, [Stack]

• Set classes:
HashSet, TreeSet, EnumSet,
LinkedHashSet,…

• Queue classes:
ArrayDeque, LinkedList, PriorityQueue

• Map classes:
HashMap, TreeMap, EnumMap,
LinkedHashMap, WeakHashMap, …

Implement the interfaces
• Each implementation has advantages and

disadvantage.

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 32

Java Interfaces and ADT’s
• A Java Interface corresponds to an Abstract Data Type

• Specifies what methods can be called on objects of this type
(specifies name, parameters and types, and type of return value)

• Behaviour of methods is only given in comments
(but cannot be enforced)

× No constructors - can’t make an instance: new Set() new List()
× No fields - doesn’t say how to store the data

public interface Set <E> {
public boolean add(E item); /*…description…*/
public boolean remove(E item); /*…description…*/
public boolean contains(E item); /*…description…*/
…

// (plus lots more methods in the Java Set interface)

Type variable – stands for whatever it is a set of..

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 33

Using Java Collection library
• Your program can

• Declare a variable, parameter, or field of the interface type

private List <String> images; // defined using the ADT – interface
Set <Student> students;

• Create a collection object

images= new ArrayList <String> (); // constructed using a class
students= new HashSet <Student> ();

• Call methods on that variable, parameter, or field
images.add(UIFileChooser.open("Choose an image file");
images.set(i, images.remove(j));
Collections.fill(images, “sunset.jpg");
if (students.contains(st)){ ….

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 34

Why?
• Why use the Interface type to declare the field/variable then use a class to make

the object?

• Can’t make an object of the interface type:
List <Double> myNumbers = new List <Double>();

• Why not just use the class?
ArrayList <Double> myNumbers = new ArrayList <Double>();

• More flexible design to use the Interface type:
List <Double> myNumbers = new ArrayList <Double>();

Could change the class later; rest of program works on any kind of List.

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 35

Stack is an exception
• There is no Interface for Stack, just a class:

Stack <Action> undoStack = new Stack <Action> (); // constructed using a class

• Stacks have four stack operations:
• empty() -> boolean is the stack empty or not

• push(item) push an item onto the top of the stack

• pop() -> item removes and returns the item at the top of the stack
(error if the stack is empty)

• peek() -> item returns the item at the top of the stack (without removing it)
(error if the stack is empty)

• Better, use the Deque (double-ended queue) interface and
the ArrayDeque class (has same push, pop, and peek, plus offer and poll)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 36

Comments on code style for 103
• I will drop “this.” except when needed.

• instead of this.loadFromFile(fname)
just loadFromFile(fname)

• instead of this.shapes.addShape(shape)
just shapes.addShape(shape)

• When is "this" needed? if a local variable or parameter has the same name as a field.

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 37

Lists vs. Stack
• In COMP102 arrays and ArrayLists were often used to store data in list. In a list the

elements can be accessed using the position of the element

0 1 2 3 4 5 6 7pos:

F q ! $ p p 2)value:

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 38

Lists vs. Stack
• In COMP102 arrays and ArrayLists were often used to store data in list. In a list the

elements can be accessed using the position of the element

• Using a stack: Elements can only be accessed at the end in the line of elements

0 1 2 3 4 5 6 7pos:

F q ! $ p p 2)value:

F q ! $ p p 2)value:

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 39

Lists vs. Stack
• Using a stack elements can only be accessed at the end in the line of elements

push(‘R’)

F q ! $ p p 2)value:

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 40

Lists vs. Stack
• Using a stack elements can only be accessed at the end in the line of elements

push(‘R’)

F q ! $ p p 2)value: R

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 41

Lists vs. Stack
• Using a stack elements can only be accessed at the end in the line of elements

peek()

F q ! $ p p 2)value: R

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 42

Lists vs. Stack
• Using a stack elements can only be accessed at the end in the line of elements

peek() => returns ‘R’ and nothing is changed on the stack.

F q ! $ p p 2)value: R

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 43

Lists vs. Stack
• Using a stack elements can only be accessed at the end in the line of elements

pop()

F q ! $ p p 2)value: R

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 44

Lists vs. Stack
• Using a stack elements can only be accessed at the end in the line of elements

pop() => returns ‘R’, which is removed from the stack.

F q ! $ p p 2)value:

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 45

Lists vs. Stack
• This is an extremely useful behaviour

• Any time you want events happening in the reverse order, e.g.
• reverse a word
• undo functionality

• Check matching events are correct, e.g.
• check if braces in a statement is used correctly

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 46

Lists vs. Stack
• Reverse a word

value:

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 47

Lists vs. Stack
• Reverse a word

push(‘w’)

wvalue:

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 48

Lists vs. Stack
• Reverse a word

push(‘w’)
push(‘o’)
push(‘r’)
push(‘d’)

w o r dvalue:

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 49

Lists vs. Stack
• Reverse a word

push(‘w’)
push(‘o’)
push(‘r’)
push(‘d’)

str = pop()
 d

w o rvalue:

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 50

Lists vs. Stack
• Reverse a word

push(‘w’)
push(‘o’)
push(‘r’)
push(‘d’)

str = pop() + pop() + pop() + pop();
 d r o w

value:

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 51

Lists vs. Stack
• Check if (([](])) is a correct use of brackets

• For each bracket in order
• If opening bracket push(opening bracket) unto stack
• If closing bracket pop stack

• If returned bracket is opening version of closing bracket ok for now, continue
• else error! //including no brackets, i.e. an empty stack

• At end of string
• if the stack is empty then the brackets are correct
• else error!

value:

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 52

Lists vs. Stack
• Check if (([](])) is a correct use of brackets

• For each bracket in order
• If opening bracket push(opening bracket) unto stack
• If closing bracket pop stack

• If returned bracket is opening version of closing bracket continue
• else error! //including no brackets, i.e. an empty stack

• At end of string
• if the stack is empty then the brackets are correct
• else error!

value:

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 53

Lists vs. Stack
• Check if (([](])) is a correct use of brackets

• For each bracket in order
• If opening bracket push(opening bracket) unto stack
• If closing bracket pop stack

• If returned bracket is opening version of closing bracket continue
• else error! //including no brackets, i.e. an empty stack

• At end of string
• if the stack is empty then the brackets are correct
• else error!

value: (

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 54

Lists vs. Stack
• Check if (([](])) is a correct use of brackets

• For each bracket in order
• If opening bracket push(opening bracket) unto stack
• If closing bracket pop stack

• If returned bracket is opening version of closing bracket continue
• else error! //including no brackets, i.e. an empty stack

• At end of string
• if the stack is empty then the brackets are correct
• else error!

value: (([

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 55

Lists vs. Stack
• Check if (([](])) is a correct use of brackets

• For each bracket in order
• If opening bracket push(opening bracket) unto stack
• If closing bracket pop stack

• If returned bracket is opening version of closing bracket continue
• else error! //including no brackets, i.e. an empty stack

• At end of string
• if the stack is empty then the brackets are correct
• else error!

value: (([

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 56

Lists vs. Stack
• Check if (([](])) is a correct use of brackets

• For each bracket in order
• If opening bracket push(opening bracket) unto stack
• If closing bracket pop stack

• If returned bracket is opening version of closing bracket continue
• else error! //including no brackets, i.e. an empty stack

• At end of string
• if the stack is empty then the brackets are correct
• else error!

value: ((
[

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 57

Lists vs. Stack
• Check if (([](])) is a correct use of brackets

• For each bracket in order
• If opening bracket push(opening bracket) unto stack
• If closing bracket pop stack

• If returned bracket is opening version of closing bracket continue
• else error! //including no brackets, i.e. an empty stack

• At end of string
• if the stack is empty then the brackets are correct
• else error!

value: (((

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 58

Lists vs. Stack
• Check if (([](])) is a correct use of brackets

• For each bracket in order
• If opening bracket push(opening bracket) unto stack
• If closing bracket pop stack

• If returned bracket is opening version of closing bracket continue
• else error! //including no brackets, i.e. an empty stack

• At end of string
• if the stack is empty then the brackets are correct
• else error!

value: (((

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 59

Lists vs. Stack
• Check if (([](])) is a correct use of brackets

• For each bracket in order
• If opening bracket push(opening bracket) unto stack
• If closing bracket pop stack

• If returned bracket is opening version of closing bracket continue
• else error! //including no brackets, i.e. an empty stack

• At end of string
• if the stack is empty then the brackets are correct
• else error!

value: ((Error!(

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 61

Undo (for Sokoban assignment)
How does it work?

• Have to keep a record of all the actions as they are done
• Have to keep enough information to be able to undo them later

• Undo button steps backwards through the record of actions, undoing the next one.

What kind of collection do we need for the record of actions?

What kind of object do we need for each action?

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 62

Brick Builder
(run the program)

• What are the actions to remember?

• What info do we need to remember for each action?

• To incorporate undo:
• create a new class to store all the information for each undo record

• fields
• constructors
• getters

• make a stack of undo record
• at each action in the program, add a new record to the stack
• add an undo button and method which pops the top record from the stack and

undoes the action

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 63

Java: if and if … else LDC 4.2

• Two forms of the if statement:
if (〈condition 〉) {

〈actions to perform if condition is true 〉
}

⇒ just skip the actions when the condition is not true !

and
if (〈condition 〉) {

〈actions to perform if condition is true 〉
}
else {

〈actions to perform if condition is false 〉
}

Note: the { … } represent a "Block" – a sequence of
actions that are wrapped up together into a single statement.

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 64

if … vs if … else …

if (boolean valued expression {

}

else

statements

)

statements

{

}

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 65

Method with a condition
/** Ask for amount and currency; print note if –ve, print value.*/
public void convertMoney() { ;

double amount = UI.askDouble("Enter amount $NZ");
if (amount < 0) {

UI.println("Note: you have entered a debt!");
}

String currency = UI.askString ("Enter currency (US or Aus)");

if (currency.equals("US")) {

UI.printf("$NZ%.2f = $US%.2f\n", amount, (amount * 0.668));
}
else {

UI.printf("$NZ%.2f = $AUS%.2f\n", amount, (amount * 0.893));
}

}

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 66

Multiway choice: if … else if … else if …

• Can put another if statement in the else part:

if (〈condition1 〉) {
〈actions to perform if condition1 is true〉

:
}
else if (〈condition2 〉) {
〈actions to perform if condition 2 is true (but not condition 1) 〉

:
}
else if (〈condition3 〉) {
〈actions to perform if condition 3 is true (but not conditions 1, 2)〉

:
}
else {
〈actions to perform if other conditions are false〉

:
}

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 67

Example with multiway choice
public void convertMoney() {

double amount = UI.askDouble("Enter amount");
if (amount < 0) {

UI.println("Note: you have entered a debt!");
}
String currency = UI.askString("Enter currency (US or Aus)");
if (currency.equals("US")) {

UI.printf("$NZ%.2f = $US%.2f\n", amount , amount * 0.668);
}
else if (currency.equals("Aus")) {

UI.printf("$NZ%.2f = $AUS%.2f\n", amount , amount * 0.893);
}
else {

UI.printf("I cannot convert to %s currency\n", currency);
}

}

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 68

Switch Statements
• Java has a second structure for conditionals: switch ... case … -> {…} … default

• Handles multi-way choice more neatly
• BUT restricted to very simple choices with integers, characters, and Strings

switch (day) {
case 1, 2, 3, 4, 5 -> {

UI.printf("Pay = $ %.2f \n", RATE * hours);
}
case 6 -> {

UI.printf("Pay = $ %.2f (time-and-a-half) \n", RATE * hours * 1.5);
}
case 7 -> {

UI.printf("Pay = $ %.2f (double-time) \n", RATE * hours * 2);
}
default -> {

UI.println(" Day must be between 1 and 7 ");
}

}

The choice tests whether the switch
value matches the literal values

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 69

Switch Statements
• switch does the comparison – no need for == or .equals(…)

switch (day) {
case "Mon", "Tue", "Wed", "Thu", "Fri" -> {

UI.printf("Pay = $ %.2f \n", RATE * hours);
}
case "Sat" -> {

UI.printf("Pay = $ %.2f (time-and-a-half) \n", RATE * hours * 1.5);
}
case "Sun" -> {

UI.printf("Pay = $ %.2f (double-time) \n", RATE * hours * 2);
}
default -> {

UI.println(" Day must be between 1 and 7 ");
}

}

If day is a String

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 70

Switch Statements
• switch does the comparison – no need for == or .equals(…)

if (day.equals("Mon") || day.equals("Tue") || day.equals("Wed") || day.equals("Thu") ||
day.equals("Fri") {

UI.printf("Pay = $ %.2f \n", RATE * hours);
}
else if (day.equals("Sat")) {

UI.printf("Pay = $ %.2f (time-and-a-half) \n", RATE * hours * 1.5);
}
else if (day.equals("Sun")) {

UI.printf("Pay = $ %.2f (double-time) \n", RATE * hours * 2);
}
else {

UI.println(" Day must be between 1 and 7 ");
}

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 71

Switch

switch (〈 expression 〉) {
case 〈 literal value 〉 , 〈 literal value 〉 ,… -> { 〈statements〉 }
case 〈 literal value 〉 , 〈 literal value 〉 ,… -> { 〈statements〉 }

:
default -> { 〈statements〉 }

}

• The 〈 expression 〉 must be of type int, String, char (or a few others)
• It cannot be a double or other kinds of value (yet)
• Can't have any comparisons or logical operators.

• Be careful: always use the -> (: is allowed but it does something different)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 72

switch … case … default …

switch (int/char/String expression {

literal value –> statements

)

case { }

,

–> statementsdefault { }

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 73

More about the Collections library
• Java provides more methods for the collections than

just the “essential” operations on the collections.
-> Read the documentation

• Makes them more useful and easier to use.

• Quick run through some of the documentation

• Note: Stack class predated the Collections library, and doesn’t have an ADT
interface.

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 74

More operations on Collections
• Collection:

• isEmpty(), size(), clear(),
• add(…), remove(…), contains(...)
• addAll(…), removeAll(…), containsAll(…), retainAll(…), removeIf(…)
• toArray()
• for(E item : collection){….}

• Set: collection that won’t allow duplicates
• exactly the operations for Collection
• HashSet, TreeSet

• List:
• additional operations based on the order:
• add(index, …), get(index), remove(index), indexOf(…), set(index, …), sublist(…)

• ArrayList, LinkedList

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 75

Collections Class and Arrays Class
• Two Classes of useful methods to operate on

• Collection objects
• some methods work on any kind of collection
• some only work on lists
• some on work on collections of certain kinds of objects

• Array objects

• eg, sort(…), reverse(…), max(…), fill(… …)

• Most methods are static, (like the Math class)
• Collections.reverse(mylist);

	Data Structures and Algorithms�XMUT-COMP 103 - 2024 T1 �Collections and Stack.
	Admin
	Collections: What’s the difference
	Essential structures and constraints:
	Abstract Data Types
	Eg: Set ADT
	Java Collections Library (in java.util)
	Java Collections library
	Java Interfaces and ADT’s
	Using Java Collection library
	Why?
	Stack is an exception
	Comments on code style for 103
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Lists vs. Stack
	Undo (for Sokoban assignment)
	Brick Builder
	Java: if and if … else	LDC 4.2
	if … vs if … else …
	Method with a condition
	Multiway choice: if … else if … else if …
	Example with multiway choice
	Switch Statements
	Switch Statements
	Switch Statements
	Switch
	switch … case … default …
	More about the Collections library
	More operations on Collections
	Collections Class and Arrays Class

