ENGR101: Lecture 6

Signals, signal processing basics.
Project 1 programming hints.

2023

=] & = E A
ENGR101: Lecture 6

What we cover today?

Signals - analog and digital

Analog to digital conversion

Project 1 introduction
C++: better(easier) arrays
Working with files

[m] = = =

ENGR101: Lecture 6

What is the signal?

® Anything that carries information can be called a signal.

® |nformation in most basic form is a measure of uncertainty
removed.

® Information is measured in bits. One bit (0 or 1, yes or no) delivered
means that uncertainty was taken out of binary choice

® Any kind of changing physical variable can be a signal and deliver an
information. Sound is a signal — changing air pressure as sensed by an
ear.
Image is a signal — changes in light intensity and colours are perceived
by the eye.

ENGR101: Lecture 6 2023 3/26

Analog signal

What we have...
® Analog signal is continuous - no matter how air pressure
much you zoom in you will see smooth curve

® We perceive everything as an analog signals - if

changes are not too fast. T
® |f it is too fast - we don't sense it.
What computer needs

is a sequence of
numbers: 12 23 45
56...

® But computers do not understand analog - they
work with numbers only and they do steps in
time.
How to convert?

ENGR101: Lecture 6 2023 4/26

Analog to digital conversion, Step 1, Sampling

® First step is to measure signal at fixed

moments of time.
air pressure T

® A sample is a value at a point in time.

® Samples are taken every T seconds

® The sampling frequency fs or sampling rate, fs, amples
is the number of samples obtained in one
second (samples per second), thus fs = 1/T.

time

® |f samples are taken at rate 10 per second
(T=0.1 sec), for example, frequency is 10 Hz.

ENGR101: Lecture 6 2023 5/26

Step 1: Sampling rate, Nyquist theorem

® How fast samples should be taken?

® Music examples: 1024 sps(samples per second) and 44100 sps. A lot
of low frequencies in 1024 sps.

® Human ear can hear acoustic signals up to 20000 Hz

* NYQUIST THEOREM:
To detect a signal at frequency f, you must take samples at a rate of
faster than 2f. To detect 1000 Hz, must digitize at > 2000 samples
per second (minimum).

Music: COUrtesy http://music.columbia.edu/cmc/musicandcomputers/chapter2/02_03.php

ENGR101: Lecture 6 2023 6/26

Nyquist theorem

Lets have a look what happens when we sample single tone signal using
different number of samples per one period of original signal.

AN ALY

Figure: 6 samples per period Figure: 4 samples per period
Original signal (red) can be Distortions are bigger but it is still
reconstructed with high quality. clear what original signal was.

ENGR101: Lecture 6 2023 7/26

Nyquist theorem

ANANA
ARVARY,

Figure: 2 samples per period - taken at Figure: 2 samples per period - taken at
right time

wrong moments

Distortions 'ar.e b'g{ but we still <.:an We can not restore original red signal
say what original signal looked like.) h1ye measurements at all. But
But we had a lucky guess in this o ict theorem is sill valid: .. take

case. What if measuren*!ents are samples at a rate of faster than 2f...
done at exactly wrong time.

ENGR101: Lecture 6 2023 8/26

What happens if Nyquist theorem is not followed?

® Red - original signal.

® Sampling frequency is
not high enough - 5
measurements for 3
periods of original signal

® Qriginal signal can not
be restored from the
measurements.

® What is restored looks Figure: Bad sampling

wrong - different

frequency.

i VS

Aliasing

® |f time between samples
is greater then
half-period of original
signal - samples do not
represent original signal

® New frequencies will be
created (aliases of
original signal
frequencies)

e We will hear (see) this
frequency - even if it is
not present in original
signal - alias

Figure: Notice false frequencies

PN Ge

[m] = = =

ENGR101: Lecture 6

Step 2: Quantization

® Amplitude of each

samples of the signal measure amplitude .
amp”:’m 9 of the samples sample is measured
15 .
o > — uu ® Analog val_ue is
8 ADC [converted into number
6 L o001 .
digital (binary)
1“| ° —— 0000 stream .
—=) — ® Fractional part of
sampling time

interval 0001(1) 1101(10) 0110(6) 0100(8)
| |

L measured value is
discarded

ENGR101: Lecture 6 2023 11/26

Analog to Digital Conversion (ADC)

® Process we went through is
Analog-to-Digital-Conversion

e ADC converts continuous (analog)
input signal into stream of binary
numbers

e Usually it does sampling and
quantization

® Qutput is distorted signal because
digital output does not represent input
signal exactly

ENGR101: Lecture 6

binary number out
at fixed moments
of time

analog signal 1

in - any value

at any moment of time [}
1
o

—>1 ADC

>~

1011 1100 1101

VALY

) 05 1 15 2

2023 12/26

Another way around - Digital To Analog conversion

N

numbers
in:

456

DAC

>

459
501 ...

analog(almost)
out

Simple sequence of numbers (raw data) is not
enough. You have to explain to DAC what is time
interval between samples.

That's what Project 1 is about.

[} [=

ENGR101: Lecture 6

Project

® You write a software which produces digital stream (array)
® Play the files and visualize air pressure (there is a software for that)

® \We made it easier for you - you don't have to follow all the bells and
whistles of audio format. All you have to do is to generate the
samples.

® Your software has to generate the signal.
You will need:
® Make new C++ project
® include library functions into your project
® Make some parts of code run repeatedly (cycles)

® Make code perform different actions depending upon some condition

ENGR101: Lecture 6 2023 14 /26

Reminder - what you may need to complete the project?

Working with arrays

® Reserving memory for the arrays (initializing)

Traversing (cycles)

Working with files (challenge part)

Q>

[m] = = =
ENGR101: Lecture 6

Project

samples

-~ a[N]

a{0] al1] a(2] [‘ ‘

1 second

T - duration of the sound

time

Software should generate samples (red
in picture). Hardware(speaker) will
smooth it (can not move very fast) and
air pressure will follow blue line (can
call it envelope)

Each sample is a number.

Samples are stored in an array. How
big is this array?

First of all we need to decide what is
time interval between samples (dt).

Good quality sound can be produced if
we use 44100 samples per second.

ENGR101: Lecture 6 2023 16 /26

]

How big is this array?

samples

dt

- a[N]

0] all] a[2] | ’ ‘ time

1 second

T - duration of the sound

® 44100 samples per second

means that samples should
follow every dt = 1/44100
seconds

Select duration of the sound T

If duration is T seconds and
samples should be dt seconds
apart then total number of
samples is:

Nsamples = T/dt (1)

ENGR101: Lecture 6 2023 17 /26

How to fill this array a[]?
We move from beginning (time=0, a[0]) to the end (time=T, a[N]).

Now we calculate amplitude (volume) of
each sample:

® To calculate air pressure at time t for
simple tone we use:

sample number i
at a(t) = A- sin(wt) (2)
al0] a[1] a[2] | ‘ ‘ A time

we need to calculate t. w = 27 f where
f is the frequency.

t=i*dt

T+ duration of the sound e What is time of sample i? OK, it is
sample number i, samples are dt apart,
so it is

t; =i *dt (3)

If i goes from 0 to N, t; goes from 0 ti T.
ENGR101: Lecture 6 2023 18 /26

Core (simple tone) - overall plan
® Select variables and values: duration of the sound T, frequency f,
sampling rate (44100), volume A. Choose variable types.
® Make more variables: dt, N, select their types (be careful here) and
calculate values
® Run cycle for i going from 0 to N. At each step:

® calculate current time
® calculate instant air pressure a

a=A-sin(wt)w=2-7-f (4)
® put a into array
® To use sin - #include <math.h>

e After whole of the array is calculated - call MakeWavFromint()
function (see Project script for datails). It will produce file with wav
extension which can be played.

® If you used vector (details below) - use MakeWavFromVector.
2023 19/26

Completion

Completion is a bit harder - frequency f should change at fixed moments.

a[0] a[N-1]
[[I J

0 f1 f2 fl T
N_samples_per_tone time

time_per_tone

Use same equation
a=A-sin(2-m-ft) (5)

but f changes at N_samples_per_tone (if counting in array elements) or
time_per_tone (if counting in seconds) since last change.

ENGR101: Lecture 6 2023 20/26

Completion

How to change the frequncy value?
There are many ways and we ask for at least two...

® Really naive one:

Listing 1: bunch of ifs

if ((i>=0) && (i<N_samples_per_tone)){ f=fl; }}
if ((i>N_samples_per_tone)&&(i<2*N_samples_per_tone)){f=f2;}}..

® Have a look at how i/N_samples_per_tone is going
® Have a look at modulo division

In any case, if you have function which returns f and takes i and
N_samples_per_tone as an arguments - you can test this function

separately.

ENGR101: Lecture 6 2023 21/26

Challenge: Working with files

Challenge requires reading file with notes.

® We used iostream - input/output from
keyboard/display. fstream class to

#include <iostream>
#include <fstream>

using namespace std; perform input/output of characters
int “?ai"()l_{ from file
string line; . .
ifstream myfile; ® You open the file first. Close after
myfile.open(” file.txt"); B ST
while (getline (myfile, line)){ finished with it.

cout<<"Read:"<<line <<endl; ® getline() returns true if line was read,

myfile . close (); false otherwise

} ® line is modified inside the function
(value, reference?)

ENGR101: Lecture 6 2023 22/26

Challenge: String is an array of characters, not a single
number

#include <string>

° i i -
include <iostream> We are reading string - array of

characters.
int mai : .
'”st;“i";ﬁli{ng str — "345" - ® \We need to convert string to int,
int d; double...
d = str; //WRONG .
return 0; ® Have a look at stod(string to double),
}

stoi(string to int) C++ functions

O = P -
ENGR101: Lecture 6

If you really hate arrays... you are in good company

Advantage of C++ arrays - speed.

Disadvantage - hard to work with: once array is created - size of it can not
be changed.

There is a nicer version : vector.

Listing 2: vector

#include <vector>
#include <iostream>
int main(){
std ::vector<int> my_vector;
my_vector.push_back (34);
my_vector.push_back (324);
my_vector.push_back (4);
my_vector. push_back (3);
for (int i=0; i<my_vector.size ();i++){
std :: cout<<my_vector[i]<<" . "<<my_vector.at(i)<<std::endl;

}

return 0;

e /%

To use vector:

® put #include <vector> before the code. It includes functions and
types defined in vector class available to use in your program

® std::vector<int> my_vector; - declare new vector which is made out
of ints. Name of this vector is my_vector. It is empty when created.

® my_vector.push_back(34); - add one more element to the vector.
34 is value of this element. Size of vector is adjusted automatically.

® to get iy, element of the vector use either my_vector[i] (does not
check that i is valid) or my_vector.at(i) (does check).

® my_vector.size() returns current size of the vector

® my_vector.pop_back() deletes last element of the vector

ENGR101: Lecture 6 2023 25/26

Questions?

[} [=
ENGR101: Lecture 6

