
ENGR101: Lecture 6
Signals, signal processing basics.
Project 1 programming hints.

2023

ENGR101: Lecture 6 2023 1 / 26

What we cover today?

• Signals - analog and digital

• Analog to digital conversion

• Project 1 introduction

• C++: better(easier) arrays

• Working with files

ENGR101: Lecture 6 2023 2 / 26

What is the signal?

• Anything that carries information can be called a signal.

• Information in most basic form is a measure of uncertainty
removed.

• Information is measured in bits. One bit (0 or 1, yes or no) delivered
means that uncertainty was taken out of binary choice

• Any kind of changing physical variable can be a signal and deliver an
information. Sound is a signal – changing air pressure as sensed by an
ear.
Image is a signal – changes in light intensity and colours are perceived
by the eye.

ENGR101: Lecture 6 2023 3 / 26

Analog signal

• Analog signal is continuous - no matter how
much you zoom in you will see smooth curve

• We perceive everything as an analog signals - if
changes are not too fast.

• If it is too fast - we don’t sense it.

• But computers do not understand analog - they
work with numbers only and they do steps in
time.

What we have...

What computer needs
is a sequence of
numbers: 12 23 45
56...

How to convert?

ENGR101: Lecture 6 2023 4 / 26

Analog to digital conversion, Step 1, Sampling

• First step is to measure signal at fixed
moments of time.

• A sample is a value at a point in time.

• Samples are taken every T seconds

• The sampling frequency fs or sampling rate, fs,
is the number of samples obtained in one
second (samples per second), thus fs = 1/T.

• If samples are taken at rate 10 per second
(T=0.1 sec), for example, frequency is 10 Hz.

ENGR101: Lecture 6 2023 5 / 26

Step 1: Sampling rate, Nyquist theorem

• How fast samples should be taken?

• Music examples: 1024 sps(samples per second) and 44100 sps. A lot
of low frequencies in 1024 sps.

• Human ear can hear acoustic signals up to 20000 Hz

• NYQUIST THEOREM:
To detect a signal at frequency f, you must take samples at a rate of
faster than 2f. To detect 1000 Hz, must digitize at > 2000 samples
per second (minimum).

Music: Courtesy http://music.columbia.edu/cmc/musicandcomputers/chapter2/02 03.php

ENGR101: Lecture 6 2023 6 / 26

Nyquist theorem

Lets have a look what happens when we sample single tone signal using
different number of samples per one period of original signal.

Figure: 6 samples per period

Original signal (red) can be
reconstructed with high quality.

Figure: 4 samples per period

Distortions are bigger but it is still
clear what original signal was.

ENGR101: Lecture 6 2023 7 / 26

Nyquist theorem

Figure: 2 samples per period - taken at
right time

Distortions are big, but we still can
say what original signal looked like.
But we had a lucky guess in this
case. What if measurements are
done at exactly wrong time.

Figure: 2 samples per period - taken at
wrong moments

We can not restore original red signal
from blue measurements at all. But
Nyquist theorem is sill valid: ...take
samples at a rate of faster than 2f...

ENGR101: Lecture 6 2023 8 / 26

What happens if Nyquist theorem is not followed?

• Red - original signal.

• Sampling frequency is
not high enough - 5
measurements for 3
periods of original signal

• Original signal can not
be restored from the
measurements.

• What is restored looks
wrong - different
frequency.

Figure: Bad sampling

ENGR101: Lecture 6 2023 9 / 26

Aliasing

• If time between samples
is greater then
half-period of original
signal - samples do not
represent original signal

• New frequencies will be
created (aliases of
original signal
frequencies)

• We will hear (see) this
frequency - even if it is
not present in original
signal - alias

Figure: Notice false frequencies

ENGR101: Lecture 6 2023 10 / 26

Step 2: Quantization

• Amplitude of each
sample is measured

• Analog value is
converted into number
(binary)

• Fractional part of
measured value is
discarded

ENGR101: Lecture 6 2023 11 / 26

Analog to Digital Conversion (ADC)

• Process we went through is
Analog-to-Digital-Conversion

• ADC converts continuous (analog)
input signal into stream of binary
numbers

• Usually it does sampling and
quantization

• Output is distorted signal because
digital output does not represent input
signal exactly

ENGR101: Lecture 6 2023 12 / 26

Another way around - Digital To Analog conversion

Simple sequence of numbers (raw data) is not
enough. You have to explain to DAC what is time
interval between samples.
That’s what Project 1 is about.

ENGR101: Lecture 6 2023 13 / 26

Project

• You write a software which produces digital stream (array)

• Play the files and visualize air pressure (there is a software for that)

• We made it easier for you - you don’t have to follow all the bells and
whistles of audio format. All you have to do is to generate the
samples.

• Your software has to generate the signal.

You will need:

• Make new C++ project

• include library functions into your project

• Make some parts of code run repeatedly (cycles)

• Make code perform different actions depending upon some condition

ENGR101: Lecture 6 2023 14 / 26

Reminder - what you may need to complete the project?

• Working with arrays

• Reserving memory for the arrays (initializing)

• Traversing (cycles)

• Working with files (challenge part)

ENGR101: Lecture 6 2023 15 / 26

Project

• Software should generate samples (red
in picture). Hardware(speaker) will
smooth it (can not move very fast) and
air pressure will follow blue line (can
call it envelope)

• Each sample is a number.

• Samples are stored in an array. How
big is this array?

• First of all we need to decide what is
time interval between samples (dt).
Good quality sound can be produced if
we use 44100 samples per second.

ENGR101: Lecture 6 2023 16 / 26

How big is this array?

• 44100 samples per second
means that samples should
follow every dt = 1/44100
seconds

• Select duration of the sound T

• If duration is T seconds and
samples should be dt seconds
apart then total number of
samples is:

Nsamples = T/dt (1)

ENGR101: Lecture 6 2023 17 / 26

How to fill this array a[]?
We move from beginning (time=0, a[0]) to the end (time=T, a[N]).

Now we calculate amplitude (volume) of
each sample:

• To calculate air pressure at time t for
simple tone we use:

a(t) = A · sin(ωt) (2)

we need to calculate t. ω = 2πf where
f is the frequency.

• What is time of sample i? OK, it is
sample number i, samples are dt apart,
so it is

ti = i ∗ dt (3)
If i goes from 0 to N, ti goes from 0 ti T.

ENGR101: Lecture 6 2023 18 / 26

Core (simple tone) - overall plan
• Select variables and values: duration of the sound T, frequency f,
sampling rate (44100), volume A. Choose variable types.

• Make more variables: dt, N, select their types (be careful here) and
calculate values

• Run cycle for i going from 0 to N. At each step:
• calculate current time
• calculate instant air pressure a

a = A · sin(ωt), ω = 2 · π · f (4)

• put a into array

• To use sin - #include <math.h>
• After whole of the array is calculated - call MakeWavFromInt()
function (see Project script for datails). It will produce file with wav
extension which can be played.

• If you used vector (details below) - use MakeWavFromVector.

ENGR101: Lecture 6 2023 19 / 26

Completion

Completion is a bit harder - frequency f should change at fixed moments.

Use same equation
a = A · sin(2 · π · ft) (5)

but f changes at N samples per tone (if counting in array elements) or
time per tone (if counting in seconds) since last change.

ENGR101: Lecture 6 2023 20 / 26

Completion

How to change the frequncy value?
There are many ways and we ask for at least two...

• Really naive one:

Listing 1: bunch of ifs
i f ((i>=0) && (i<N samp l e s p e r t on e)){ f=f1 ; }}
i f ((i>=N samp l e s p e r t on e)&&(i <2*N samp l e s p e r t on e)){ f=f2 ; } } . .

• Have a look at how i/N samples per tone is going

• Have a look at modulo division

In any case, if you have function which returns f and takes i and
N samples per tone as an arguments - you can test this function
separately.

ENGR101: Lecture 6 2023 21 / 26

Challenge: Working with files

Challenge requires reading file with notes.

#i n c l u d e <i o s t r eam>
#i n c l u d e <f s t r eam>
u s i n g namespace s td ;
i n t main (){

s t r i n g l i n e ;
i f s t r e am my f i l e ;
m y f i l e . open (” f i l e . t x t ”) ;
wh i l e (g e t l i n e (my f i l e , l i n e)){

cout<<”Read : ”<< l i n e<<end l ;
}
my f i l e . c l o s e () ;

}

• We used iostream - input/output from
keyboard/display. fstream class to
perform input/output of characters
from file

• You open the file first. Close after
finished with it.

• getline() returns true if line was read,
false otherwise

• line is modified inside the function
(value, reference?)

ENGR101: Lecture 6 2023 22 / 26

Challenge: String is an array of characters, not a single
number

#i n c l u d e <s t r i n g>
#i n c l u d e <i o s t r eam>

i n t main (){
s t d : : s t r i n g s t r = ”345” ;
i n t d ;
d = s t r ; //WRONG
r e t u r n 0 ;

}

• We are reading string - array of
characters.

• We need to convert string to int,
double...

• Have a look at stod(string to double),
stoi(string to int) C++ functions

ENGR101: Lecture 6 2023 23 / 26

If you really hate arrays... you are in good company
Advantage of C++ arrays - speed.
Disadvantage - hard to work with: once array is created - size of it can not
be changed.
There is a nicer version : vector.

Listing 2: vector
#i n c l u d e <vec to r>
#i n c l u d e <i o s t r eam>
i n t main (){

s t d : : v e c to r<i n t> my vecto r ;
my vec to r . push back (3 4) ;
my vec to r . push back (3 2 4) ;
my vec to r . push back (4) ;
my vec to r . push back (3) ;
f o r (i n t i =0; i<my vecto r . s i z e () ; i ++){
s t d : : cout<<my vecto r [i]<<” ”<<my vecto r . a t (i)<<s t d : : e nd l ;

}
r e t u r n 0 ;

}

ENGR101: Lecture 6 2023 24 / 26

To use vector:

• put #include <vector> before the code. It includes functions and
types defined in vector class available to use in your program

• std::vector<int> my vector; - declare new vector which is made out
of ints. Name of this vector is my vector. It is empty when created.

• my vector.push back(34); - add one more element to the vector.
34 is value of this element. Size of vector is adjusted automatically.

• to get ith element of the vector use either my vector[i] (does not
check that i is valid) or my vector.at(i) (does check).

• my vector.size() returns current size of the vector

• my vector.pop back() deletes last element of the vector

ENGR101: Lecture 6 2023 25 / 26

Questions?

ENGR101: Lecture 6 2023 26 / 26

