
ENGR101: Lecture 3
How to use C++, variables, arrays

2024

ENGR101: Lecture 3 2024 1 / 36

What we cover this time?

• What is computer program and how you make one

• Variables - and another go at the memory

• Variable types

• Grouping variables together

ENGR101: Lecture 3 2024 2 / 36

Everything in the computer, including programs, is a
number in binary format

• Everything is stored and processed as binary numbers.

• Binary numbers are broken into groups of 8 bits, called bytes.

• Processor executes machine codes which are not human-readable

ENGR101: Lecture 3 2024 3 / 36

Humans don’t understand binary. Processors understand
binary only.

Machine language vs Human-readable language

• All CPU instructions are stored in memory as
numbers.

• Set of such a numbers is called machine code
and that what processor is running.

• Nobody writes machine codes any more.

• Programs are created in human-readable form
and automatically translated into machine
codes.

Now lets have a look how this translation is done.

ENGR101: Lecture 3 2024 4 / 36

Making program to run. Ignore what program does for
now.

1 Write/edit text of the program. Human
readable - if you are specific human

2 Translate text into machine codes
It is done in two stages:

• Compiler checks that there are no
errors in this text and produces object
file

• Linker (sometimes called builder)
takes object file, adds services and
produces executable file

3 Run the executable

Optional step: Watch computer to go up in flames, say ”It is funny” and
go back to 1

ENGR101: Lecture 3 2024 5 / 36

We will be using C++ programming language

• Very old - basic C written in 1972 by Dennis Ritchie in ATT.

• There are two versions: C - development frozen
C++ - C with additions. Keeps growing and expanding.

• As close to hardware as it can get (with the exception of assembler)

• Why do we have to use the tool which is almost 50 years old?

Why indeed?

• It is fastest of all languages.

• And most dangerous one. There is no built-in safeguards. Gives you
good programming habits.

• Used in areas where speed is of utmost concern: gaming, graphics,
networking, operating systems (Windows written C++, Linux written
in C, Mac - modified C++)

• Used when hardware is limited: robotics, network gear.

ENGR101: Lecture 3 2024 6 / 36

C++ programming tools

We will be trying things as we go along. To do it we need some tools, at
least:

• C++ compiler (C++20 recommended)

• code editor (we use Geany)

Instructions on how to install C++ and code editror (Geany):
https://ecs.wgtn.ac.nz/Courses/ENGR101_2024T1/InstallC

It is not compulsory to use Geany. But you are on your own if you use
Sublime, VSCode, CodeBlocks, Atom or any of the others.
When programming robot we will use Command Line Interface.

ENGR101: Lecture 3 2024 7 / 36

https://ecs.wgtn.ac.nz/Courses/ENGR101_2024T1/InstallC

Program text to machine codes: Compile, build and run

Figure: Compile, build and run in Geany

Using Build menu option you can
convert text of your program into
machine codes (executable file) and
run it. It is two stages process:

• Compile - convert some program
text into object code. Object
code can not execute.

• Build (sometimes called link) -
takes object codes (usually from
several programs) and converts
object code into true executable.

• Execute - it runs the program.

ENGR101: Lecture 3 2024 8 / 36

Hello, world

Following time-honored tradition we start with the program which prints
Hello, world on the screen.

Listing 1: Prints ”Hello world” and looks Greek

#include <iostream >

int main (){

std::cout <<"Hello ,␣world"<<std::endl;

return 0;

}

File should be saved with cpp extension, so the Geany knows that C++
compiler should be engaged. Compile(F8), build (F9), run (F5). Now lets
go through what is in listing.

ENGR101: Lecture 3 2024 9 / 36

std::cout ?

Listing 2: Prints ”Hello world” and looks Greek

std::cout <<"Hello ,␣world"<<std::endl;

• Standard console out:: std::cout.

• Prints whatever is after <<.

• std::endl moves screen cursor to next line.

• if you need more output: add << to the end followed by more output

ENGR101: Lecture 3 2024 10 / 36

main() ?
What is main() ? Lets make program without one.

• Compile - OK

• Build - (.text+0x20): undefined reference to ‘main’

It needs main() - which is entry point of the program.
After that comes block of code enclosed in curly braces. Program runs
from opening brace until closing one.
OK, let us put in main()...

Listing 3: ”Does nothing and does not compile either”

main()

{

}

Still complaining but runs:

me1.cpp:2:6: warning: ISO C++ forbids declaration of ‘main’ with no
type [-Wreturn-type]

ENGR101: Lecture 3 2024 11 / 36

Quiz time...

Can I have two main() functions? Let’s vote ...

1 Yes

2 No

Let’s check...

ENGR101: Lecture 3 2024 12 / 36

include ?

If there is std :: cout in the program and no #include < iostream > then
compiler fails.
When describing how to produce machine codes, we mentioned ...adding
srevices... . Thats what happens here:
#include < iostream > instructs compiler find and, er, include services
provided by iostream program(library). This library provides Input-Output
services for printing on the screen ans reading keyboard.

Listing 4: Prints

#include <iostream >

int main (){

std::cout <<"something"<<std::endl;

return 0;

}

ENGR101: Lecture 3 2024 13 / 36

Demos

• What happens if we try to read object and executable files?
• Not all languages go through this process in this order.

• Compiled languages (C++, Java) - take whole file and convert it into
machine codes. Then file with machine codes (binary) can be
executed, or copied to another computer and run there

• Interpreted languages (Python) - take one human-readable instruction,
convert into code, execute. Take next instruction... Such an approach
requires Python to run on the machine where you want program
executed.

ENGR101: Lecture 3 2024 14 / 36

Variables - numbers stored in memory

Now that we know how to run the code, let us start trying to write some
code.
When program runs values in memory are modified.

• Values are stored in memory by addresses

• To remember addresses of specific values is too
cumbersome

• Lets give them some meaningful labels

• Even a is better than address 23,567,788

• Compiler assigns addresses to names
automatically

ENGR101: Lecture 3 2024 15 / 36

Variables

Let’s try to make variable, called a.
a = 211 - we want value of a to be 211.

Listing 5: ” Attempt to make the variable”

int main (){

a=5;

}

Compile?

ENGR101: Lecture 3 2024 16 / 36

Variable types

We got error message:
error: ‘a’ was not declared in this scope
what means that compiler did not understand what the a is and a was not
recognized as a variable.
Error happens because of the way variables are stored in memory in C++
(Java as well).
C is strongly typed language. All variables should be of certain type.
int a = 0;, for example, works just fine. int is a type.
What are types?
Type specifies how many bytes of memory are used to store the variable.

ENGR101: Lecture 3 2024 17 / 36

Some variable types in C:
Some of C++ variable types:

• char: variable is 8 bits (1 Byte) long.
Maximum value is 11111112=25510.

• short: variable is 2 Bytes long. Max =
11111111 111111112 = 65535

• int: 4 Bytes. Max = 4 294 967 295

• double: 8 bytes - can store fractional
parts

There is an operator to figure out number of bytes variable takes:

Listing 6: Prints size of variable in Bytes

int a;

std::cout <<"Size␣of␣a␣is:<<sizeof(a)<<endl

ENGR101: Lecture 3 2024 18 / 36

Can we see what address variable is stored at?

Yes.
C is almost unique when it allows the programmer to work with memory
addresses.
Programmer can read and modify contents of any memory cell.
If it happens to be wrong memory cell - bad luck.
If programmer modified memory cell inside program memory - program is
ruined.

ENGR101: Lecture 3 2024 19 / 36

Can we see what address variable is stored at?

To see variable address use ampersand (&) in front of variable name.

Listing 7: ”Address”

#include <iostream >

int main (){

int a=5;

std::cout <<"␣Value␣of␣a␣is␣"<<a<<std::endl;

std::cout <<"␣Address␣of␣a␣is␣"<<&a<<std::endl;

}

Output of the program is (from run to run address can be different):

Listing 8: ”Pointer value”

Value of a is 5

Address of a is 0x61fecc

Address is printed in hexadecimal

ENGR101: Lecture 3 2024 20 / 36

What is happening under the hood when variable is
declared?

• Declare variable name a of type
int

• int is 4 bytes long

• Compiler find free memory block
and chooses memory address for
the variable

• From now on a means: 4 bytes
starting from address 0x61fecc

ENGR101: Lecture 3 2024 21 / 36

What is happening under the hood when variable is
declared?

Listing 9: ”Two variables”

int a;

int b;

• We declare another variable

• C reserves memory in order of
variables declaration

ENGR101: Lecture 3 2024 22 / 36

Variables scope
When variable is declared compiler associates variable name with memory
address. How long compiler keeps this information?
Simple answer - from line with declaration statement until end of code
block. Code block is set of statements between pair of curly brackets
{....}.

Listing 10: ”Variable scope”

#include <iostream >

int main()

{

{

int s=254;

std::cout <<s<<std::endl;

}

std::cout <<"s="<<s<<std::endl;

}

Question:
Will that compile?

1 Yes

2 No

ENGR101: Lecture 3 2024 23 / 36

Variable scope

Listing 11: ”Scope”

#include <iostream >

int a; // global variable

int main (){

a = 5;

std::cout <<"a="<<a<<std::endl;

}

• If variable was declared before
code block - it can be used
inside this block.

• If variable was declared before
main() then it is global variable
and can be used anywhere in
the program. BAD IDEA.

ENGR101: Lecture 3 2024 24 / 36

Limits of variables

Listing 12: Hm..

#include <iostream >

int main (){

unsigned char a = 255;

std::cout <<"before:␣a="<<(int)a<<std::endl;

a = a + 1;

std::cout <<"after:␣a="<<(int)a<<std::endl;

}

What will happen?

1 before a = 255 after a = 256

2 before a = 255 after a = 255

3 before a = 255 after a = 0

4 Computer explodes

Reminder - char is 8
bits(1 Byte) long.
Maximum value:
111111112 = 25510

Address Bytes

char

short

int

Figure:

ENGR101: Lecture 3 2024 25 / 36

Overflow

• Why?
8 bits = 1 Byte

a=255 1 1 1 1 1 1 1 1

+1

b=256 as it should be 1 0 0 0 0 0 0 0 0

b=0 as it is in memory x 0 0 0 0 0 0 0 0

• Worst type of programming error - logical program error. It is not
detected until program runs

ENGR101: Lecture 3 2024 26 / 36

Arrays: why use them and what are arrays anyway?

Example: You have an image. Image is made out of pixels (dots). There
can be thousands of them. Each pixel contains three numbers: reg, green
and blue. To specify red levels across the image we can use type char. If
we have say 2000 pixels then to describe level od red in all pixels we can
declare 2000 variables.

Listing 13: ”Naive way to describe level of red”

char red_pix0;

cahr red_pix1;

// many more of them

char red_pix1999;

Not impossible but it is a lot of typying. All elements of the array should
be of the same type.

ENGR101: Lecture 3 2024 27 / 36

Arrays

There is a better way. It is possible to declare many instances of similar
variables using only one line of code.

Listing 14: ” Much less typing”

char red_pix [2000];

ENGR101: Lecture 3 2024 28 / 36

Array of chars in memory

Memory address of the array
elements is decided automatically.

Listing 15: ”Array of char”

char a[3];

a[0] = 45;

a[1] = 32;

a[2] = 3;

ENGR101: Lecture 3 2024 29 / 36

Array of ints in memory

Memory address of the array
elements is decided automatically.

Listing 16: ”Array of int”

int a[3];

a[0] = 457;

a[1] = 132;

a[2] = 45;

Memory reserved is without gaps - next int starts right after previous one.

ENGR101: Lecture 3 2024 30 / 36

Indexing

Indexes are zero-based, i.e. first element can be accessed using
array name[0].

To calculate position in memory
element number index

da = a[0] + index · sizeof (element)
(1)

This equation gives memory address
of array element.
It is very fast to calculate: one
multiplication and one addition.

ENGR101: Lecture 3 2024 31 / 36

Listing 17: ”Logical error”

#include <iostream >

int main (){

int a[5];

a[0] = 100;

a[1] = 10;

a[2] = 1000;

a[3] = 121;

a[4] = 10;

std::cout <<"a[0]="<<a[0]<<std::endl;

std::cout <<"a[1]="<<a[1]<<std::endl;

std::cout <<"a[2]="<<a[2]<<std::endl;

std::cout <<"a[3]="<<a[3]<<std::endl;

std::cout <<"a[4]="<<a[4]<<std::endl;

// hm..

std::cout <<"a[50]="<<a[50]<<std::endl;

return 0;

}

ENGR101: Lecture 3 2024 32 / 36

No boundary checking

Each program is given certain range of memory addresses. If your C
program asks for memory address which is outside this range -
segmentation fault occurs. Decision is made by operating system.
C itself has no safeguards.
Memory is allocated sequentially for all variables.

ENGR101: Lecture 3 2024 33 / 36

Array of non-fixed size

How to reserve the memory for an array size of which we don’t know?
Some of forgiving C++ compilers will allow something like that

Listing 18: Descriptive Caption Text

int n = 9; // declaration of the variable

int a[n]; // declaration of the array

and some compilers will not.
Microsoft compiler certainly does not.

ENGR101: Lecture 3 2024 34 / 36

Array of non-fixed size

Better (more compatible) way is to write:

Listing 19: Proper way

#include <iostream >

int main (){

int* a; //pointer , address of 1st byte of 1st element

int n = 45; // variable

a = new int[n]; //make memory for the array of int , size 45

a[34] = 98;

std::cout <<a[34]<<std::endl;

delete(a); // gives memory back to Operating System

return 0;

}

even if it is quite a lot type in. delete() is marking reserved memory as
free for re-use.
Memory leaks.

ENGR101: Lecture 3 2024 35 / 36

Questions?

ENGR101: Lecture 3 2024 36 / 36

