ENGR101: Lecture 4

Functions in C++

ECS, VUW

March 2024

(ECS, VUW)

ENGR101: Lecture 4

Reminders 1

- Everything is binary number
- Variables are stored in memory (naturally, as binary numbers)

- All variables should be declared (it specifies how many bits variable
contains)

- Programs run by steps

- Any runnable C++ program should contain one main() - it is starting
point of the program

(ECS, VUW) ENGR101: Lecture 4 March 2024 2/1

Introduction. Why use functions?

Many programs are BIG. As a rather naive metric we can count number of
lines of code (LOC).

Quake 3 - 0.4 MLOC.
Windows XP - 45 MLOC
Mac OS Tiger - 86 MLOC

Source:

https://informationisbeautiful.net/visualizations/million-lines-of-code/

\ T

That would be impossible to write something like that as a single piece.
Better approach is to separate the software into smaller parts.
Smaller programs are called function.

(ECS, VUW) ENGR101: Lecture 4 March 2024 3/1

https://informationisbeautiful.net/visualizations/million-lines-of-code/

What is the function in programming?

Function is separate piece of code, enclosed by braces with a name:
name(){ function code here }.

® We write and test functions as separate pieces
of code.

main() code functionl1() code
,

® Code execution is done line by line.
Yunctionl(/))
/

® When executed program reaches the line with

. L Y
function name - function is called and function20 | forciona() code
execution jumps inside the function. v i

® When last line of the function is reached -
execution is transferred back. Function
returns.

(ECS, VUW) ENGR101: Lecture 4 March 2024 4/1

Function example

Listing 1: Function f1()

#include <iostream>
void f1(){

std::cout<<"_ I am_ function"<<std::endl;

}

int main (){
std::cout<<" I amymaing program"<<std::endl;
£10;

std::cout<<" I amymain,program"<<std::endl;
return O0;

}

Have a look at this code..

(ECS, VUW) ENGR101: Lecture 4

Two similar blocks

Listing 2: Caption

#include <iostream>

using namespace std; ® There are two blocks of code,
void £1(){ similar in structure
CEEFSII0 UL G SEIGEE Sl ® Structure is: type (void means
}

no type), name/label (f1 and

main), opening curly brace,
some code and closing brace.

® Both blocks are functions

(ECS, VUW) ENGR101: Lecture 4

Execution order of programwith function

no functions function f1 ® |f there are no functions - execution
void f10{ starts next line after main(){ and goes
Tai”(){ iy until paired }.
< main(){ ® There is a function:
Y 10" ® Starts at same point
\)+ ® Reaches f1(); line in main(). f1 is
¥ called - processor jumps to executing

code between pair of brackets of fl1.
Figure: Execution flow ® Reaches closing brace in f1 - jumps
back to main.

(ECS, VUW) ENGR101: Lecture 4 March 2024 7/1

Function definition and function call(use)

® There is function definition -

Listing 3: Caption actual code of the function

Zinclude <iostream> ® There is function call - use of
// definition the function
void f1(){ g . .
std :: cout<<” function"<<std :: endl; i C++ compller IS Stupld here - it
} should know what function
int main(){ actually does before processing
std :: cout<<"mainl"<<std :: endl; function call. Otherwise there is

f1(); //call
std :: cout<<”" main2”<<std :: endl;
return O; °

a compile error.

It is limiting - main() should
always be last in file text

® There is a way around it.

(ECS, VUW) ENGR101: Lecture 4 March 2024 8/1

Function definition and function call(use)

Listing 4: Caption

#include <iostream>
//function declaration
void f1();

We can put definition after call. But
then we have to put declaration
int main(){ before call. Declaration in this case is
:;d(j';co;t/ii,r,naml <<stdizendliyoid f1();. It is kind of promise to
std :: cout<<"main2"<<std :: endl; compiler: if there is call to f1() -

return 0; there is defintion of it somehere, just

// definition — actual code look for it.
void f1(){

std :: cout<<” function”"<<std :: endl;
}

(ECS, VUW) ENGR101: Lecture 4 March 2024 9/1

More usefull functions:

Function f1() as it is does not do much - it prints message on the screen.
It would be more usefull if function takes in some data, calculates
something and gives result back.

To give result back - use return keyword.

Listing 5: give back

#include <iostream>
//function declaration
int f1();

int main(){
int x = f1(); //call
std :: cout<<" x="<<x<<std :: endl;
return O;

}

int f1(){
return 2; //

}

(ECS, VUW) ENGR101: Lecture 4 March 2024 10/1

Function arguments - getting data into the function

Listing 6: "Names”

#include <iostream>
using namespace std;

® Function add - takes two //definition
numbers and returns the sum int add(int a, int b){
int z;
® We used names a and b for 7z =a+b;
arguments at function definition return z;
® When function is called, we used
int main(){
names x and y int x = 1
® |s it right? int y = 2;
x = add(x,y); //call
cout<<x<<endl;
}

It is right - logic here is that function can be called many times with
different arguments.

(ECS, VUW) ENGR101: Lecture 4 March 2024 11/1

Memory for functions

memory X 1 - .
areafor | - — ® \When main starts - memory is
main()
copying reserved for variables x and y
contents
° . .
1| | cereandy ® Values 1 and 2 are written into
calstora memory
2| andb .
memory| 3 [1 ® Code reaches line x =
area for | 2 . .
add0 ‘ add(x,y);. add() is a function
® New memory area is used for all
#include <iostream> variables used in add().
in_t add(int a, int b){
retum ® There are two arguments (a and
}
nd z
int main(){ we are here b) a d
intx=1;
inty =2;
x = add(x,y); // x now is equal to x+y
}

(ECS, VUW) ENGR101: Lecture 4 March 2024 12/1

Memory for functions

memory X 1
area for
main() y 2
copying
contents
of memory
1 cells x and y
into memory
cells for a
2| andb
memory | @ 1
area for | 2
add() o
#include <iostream>
int add(int a, int b){
intz=a+b;
return z;
}
int main(){ we are here
intx=1;
inty =2;
x = add(x,y); // x now is equal to x+y
}

Values of x and y are copied
into memory area for add()

In function call add(x,y); x is
first in the list

In function definition int
add(int a, int b) a is first
So value of x is copied into
memory for a

Same for variables which are
second in function call and
definition

(ECS, VUW) ENGR101: Lecture 4 March 2024 13/1

function runs

memory | x |3 Je&— ® Code of add() runs
main() y 2 .
value of z ® Value of z is calculated
copleq back .
to main and stored in memory
¢ add() code uses memory
area for the function.
memory | @ 1 . i .
areafor b [2 ® 7 is created in this area
z 3 _—
® Code reaches return z
line
#include <iostream>
int add(int a, int b){ .
oA ® [ooks at line
yeme x=add(x,y);. Result of
h . . .
MEAEEE int maing add() is copied into x
intx=1;
inty - 2.

x = add(x,y); // x now is equal to x+y

(ECS, VUW) ENGR101: Lecture 4 March 2024 14 /1

Finished with function

area for ; 23 ® Memory area for add() is
main()
labeled as free to store other
variables
® Result of such an arrangement
N / is: whatever happens inside the
memory NS _ function - stays inside the
2dd() /\ variables)
| foroetten function.
B ® \ery reasonable arrangement:
#include <iostream> ® it limits number of variables
int add(int a, int b){ .
Mtz =ity you have to think about
jen e ® it makes code speed
wearehere 01 optimization (cache)
intx=1;
inty =2;

x = add(x,y); // x now is equal to x+y
(ECS, VUW) ENGR101: Lecture 4 March 2024 15/1

Question?

Listing 7: Question

#include <iostream> What will be printed?

using namespace std; . o

void foo(int x){ ®In mam()' x=0
cout<<" Inside-foo () -x="<<x<<endl; Inside foo() x=0
x =x + 1; . o
cout<<" Inside-foo () -x="<<x<<endl; InS|de_foo() x=1

} In main(). x =10

int main(){ ® In main(). x=0
int x= 0; Inside foo() x = 0

t<<" In - i Loxm=-" dl; .

;:;);1(§<); n-main().-x <<x<<endl; Inside foo() =1
cout<<” In-main (). -x-=-"<<x<<endl; In main(). x=1
return 0;

}

(ECS, VUW) ENGR101: Lecture 4 March 2024 16/1

Local variables

Varaiables declared inside the function (inside braces) - local variables.

Listing 8: Local vars

include <iostream>

using namespace std; You can (and should, really) declare
int f . L .

int foo){ variables inside the function. Such

int a = 9; .
variables are called local. Scope of
cout<<"a="<<a<<endl; . .
. the variable is, as usual, from
return a; l . .
} declaration until next closing bracket
(highlighted). Outside of the scope
int main (){ variables do not exist.
foo();
return O;

}

(ECS, VUW) ENGR101: Lecture 4 March 2024 17/1

Question

Listing 9: Caption

include <iostream> What happens if you run this
using namespace std; program?
int foo(D{ Prints:

int a = 9; @ Prints:

cout<<"a="<<a<<endl; a=y9;

return a; a=29;
} .

® Does not compile

int main(){ © Prints:

foo) a=09:

cout<<"a="<<a<<endl;

a=20

return O;

}
o> <& = E z

(ECS, VUW) ENGR101: Lecture 4

Global variables - BAD ones

You can declare the variable outside of any pair of braces, like it is shown
in listing below. Then this variable becomes global - it is visible and can
be used anywhere in the program (after declaration).

Listing 10: Global a
include <iostream> What happens if you run this

using namespace std;

program?

int foo(){ It runs fine and a is defined

a=09; .

coutee s <<Blkccend! everywhere in the program.

return a; Now you have a problem: no matter
’ which part of the program you edit,
'::O(Ta'"(){ have to be aware about what is value
cout<<” a="<< a <<a<<endl; Of a Nnow.

return 0;

(ECS, VUW) ENGR101: Lecture 4 March 2024 19/1

By value

What we described above is called passing arguments by value. Name
makes it clear that values are copied over form one variable to another.

It is nice and safe technique which allows programmer to think only about
limited number of variables.

But there is one not so good thing about it - it requires copying of the
values.

It can be not big deal if couple of bytes are moved over.

It becomes slow when big arrays are argument or result of the function.
Remember, we mentioned that memory is slow. OK, here copying huge
arrays can slow your program down.

(ECS, VUW) ENGR101: Lecture 4 March 2024 20/1

By reference

Look at these listings. Find the difference.

Listing 11: old

Listing 12: new

#include <iostream>
int add(int a, int b){

int z =a+b;
return z;
}
int main(){
int x = 1;
int y =2;

x = add(x,y);

std 1 cout<<" x="<<x<<std :: endl;
return 0;

#include <iostream>
int add(int& a, int& b){

int z =a+b;
return z;
}
int main(){
int x = 1;
int y =2;

x = add(x,y);

std 1 cout<<" x="<<x<<std :: endl;
return 0;

(ECS, VUW)

ENGR101: Lecture 4

By reference

Listing 13: Caption

#include <iostream>

int add(int& a, int& b){
int z =a+b;
return z;

}

int main(){
int x = 1;
int y =2;
x = add(x,y);
std 1 cout<<" x="<<x<<std :: endl;
return 0;

(ECS, VUW)

® Instead of contents of memory

cell (i.e. value) under the hood
address is passed into the
function if argument
specification contains &, as in
int& a.

So, even if names are different
(a and x in this case, they
reference same memory cells).

Passing address (one number) as
an argument into the function is
much faster than copying many

elements of the array

ENGR101: Lecture 4 March 2024 22/1

Argument by reference

One side-effect of passing argument by reference:

Listing 14: Caption

#include <iostream>
int add(int a, int& b){

int z =a+tb;
b=b+1;
return z; ® In left listing both y and b
} reference same memory cells
int mai"i(r)]‘i R ® When b is modified inside add()
int y — 2. function, y is modified too

std :: cout<<" before -y="<<y<<std :: endl;
x = add(x,y);

std :: cout<<” after -y="<<y<<std :: endl;

return O;

(ECS, VUW) ENGR101: Lecture 4 March 2024 23/1

Question

Listing 15: "Did it change?”

#include <iostream>
using namespace std;
int max(int& x, int y){

it z; What is an output?

if (x>y) z=x;

else z = y; ® Before: a=5 b=6

x = x+ 1; o o

return z. After: a=b b=6
} ® Before: a=5 b=6
int main(){ After: a=6 b=6

int a =5; int b= 6; int c;

cout<<" Before:--a="<<a<<" -b="<<b<<" - -b-=-"<<c<<endl ;

¢ = mmax(a,b);
cout<<" After:--a="<<a<<" -b="<<b<<" - -b-=-"<<c<<endl ;

}

u}
8
I
il
it

(ECS, VUW) ENGR101: Lecture 4

Questions?

(ECS, VUW)

ENGR101: Lecture 4

