
ENGR101: Lecture 5
Structuring program data.
Conditional. Iterations

ECS, VUW

March, 2023

(ECS, VUW) ENGR101: Lecture 5 March, 2023 1 / 24

What we cover today?

1 Structuring program data

2 Conditional

3 Iterations

(ECS, VUW) ENGR101: Lecture 5 March, 2023 2 / 24

Types - reminder. Limiting.

We mentioned that all variables should be assigned type.
Type describes how many bytes variable takes when stored in memory.
Type allows to catch a lot of mistakes in code.
But if we are limited to build-in types (int,char,double...) and arrays
made out of them - not impossible to program using only these but code
will be bulky and error-prone.

(ECS, VUW) ENGR101: Lecture 5 March, 2023 3 / 24

Customizing types to the task

When programming we deal with real-world objects: book, pixel, car for
sale, customer, shopping item, etc.
As an example, we want to write library database.
Each book can be described by:

• Title (string)

• Author (string)

• Number of pages (int)

• Available (bool)

And we have many of these books.
Note: string is an array of characters and it is C++ type. If you need
assign value to string - it should be enclosed in double quotation marks. To
use this type - put #include <string> at the beginning of the program.

(ECS, VUW) ENGR101: Lecture 5 March, 2023 4 / 24

Naive approach

Without much thinking, we write

Listing 1: Caption

int main (){

std:: string titles [500];

std:: string authors [500];

bool available [500];

int num_pages [500];

titles [44]="Adventures␣in␣C++␣land";

authors [44] = "me␣and␣myself";

}

Not very nice approach - you have to watch index of arrays carefully.

(ECS, VUW) ENGR101: Lecture 5 March, 2023 5 / 24

Better approach - group your variables together

Better approach - group variables for one book together.

Figure: Struct

Listing 2: struct

struct Book{

std:: string title;

std:: string author;

int num_pages;

bool available;

};

Simplest way to do that in C++ - use struct.
Each variable grouped together is called member of the struct.

(ECS, VUW) ENGR101: Lecture 5 March, 2023 6 / 24

Variable of custom type: declaration

Listing 3: struct variable

struct Book{

std:: string title;

std:: string author;

int num_pages;

bool available;

};

int main (){

Book book1;

}

Once we created custom type (type
Book in this case), we can declare
variable of this type (book).
Convention: type names start with
capital, variable names - with
lowercase.

(ECS, VUW) ENGR101: Lecture 5 March, 2023 7 / 24

Access to struct members

Listing 4: struct variable

struct Book{

std:: string title;

std:: string author;

int num_pages;

bool available;

};

int main (){

Book book1;

Book book2;

book1.num_pages = 45;

book2.num_pages = 12345;

}

We need to set/get values of struct
members. To do that use variable
name (book1, for example) followed
by dot and member name. It sets
member value only for this particular
struct type variable.
book1.num pages = 45; sets
num pages only for book1.

(ECS, VUW) ENGR101: Lecture 5 March, 2023 8 / 24

struct makes code more compact

We can use struct as an argument for function

Listing 5: struct variable as function argument
u s i n g namespace s td ;
\\ d e c l a r a t i o n o f Book type as
\\ pe r p r e v i o u s s l i d e s
vo id p r i n t b o o k (Book book){

cout<<” t i t l e : ”<<book . t i t l e<<end l ;
cout<<” autho r : ”<<book . author<<end l ;
cout<<”num pages : ”<<book . num pages<<end l ;
cout<<” a v a i l a b l e : ”<<book . a v a i l a b l e<<end l ;

}

i n t main (){
Book book1 ;
book1 . num pages = 45 ;
p r i n t b o o k (book1) ;

}

We can pass variable
of our custom type as
an argument to the
function: we can use
print book(book1)
instead of listing all
four members of the
struct.

(ECS, VUW) ENGR101: Lecture 5 March, 2023 9 / 24

Function as a member of struct

Listing 6: function as a struct member
s t r u c t Book{

s t d : : s t r i n g t i t l e ;
s t d : : s t r i n g autho r ;
i n t num pages ;
boo l a v a i l a b l e ;
vo id p r i n t b o o k () ; // member f u n c t i o n

} ;

vo id Book : : p r i n t b o o k (){
s t d : : cout<<” t i t l e : ”<<t i t l e<<s t d : : e nd l ;
s t d : : cout<<” autho r : ”<<author<<s t d : : e nd l ;

}

i n t main (){
Book book1 ;
book1 . p r i n t b o o k () ;

}

Function can be made a member of
struct.
In this case when
book1.print book(); is called,
function will use member values of
book1 variable.
Note: it is only C++ option.

Note: You can notice that it looks similar to class. struct is simple
version of class with all members “public”.

(ECS, VUW) ENGR101: Lecture 5 March, 2023 10 / 24

Question (hint - reference vs value function arguments)

We want set pages of the Book type variable inside the function:

Listing 7: “Does it work?”
#inc l u d e <i o s t r eam>
s t r u c t Book{

s t d : : s t r i n g t i t l e ;
s t d : : s t r i n g autho r ;
i n t num pages ;
boo l a v a i l a b l e ;
vo id p r i n t b o o k () ; // member f u n c t i o n

} ;

vo id s e t p a g e s (Book b , i n t pages){
b . num pages = pages ;

}

i n t main (){
Book book1 ;
book1 . num pages = 9 ;
s t d : : cout<<” pages=”<<book1 . num pages<<s t d : : e nd l ;
s e t p a g e s (book1 , 4 5) ;
s t d : : cout<<” pages=”<<book1 . num pages<<s t d : : e nd l ;

}

Does function
set pages
work (does it
change pages
)?

• yes

• no

(ECS, VUW) ENGR101: Lecture 5 March, 2023 11 / 24

struct as result of a function

Listing 8: struct return

// define Book type

Book enter_book (){

Book b;

std::cin >>b.author;

return b;

}

int main (){

Book book1 = enter_book ();

return 0;

}

struct can be returned from the
function. Declare variable of custom
struct type inside the function, set
member values, return it.
On line book1 = enter book();
memory contents of b (inside
function memory area) will be copied
over into memory for book1.

(ECS, VUW) ENGR101: Lecture 5 March, 2023 12 / 24

Conditional execution

More often than not you want your
code do different things depending
on condition.

Listing 9: this way

if (condition){

// branch 1

} else {

// branch 2

}

condition here is bool type variable (1 Byte).

(ECS, VUW) ENGR101: Lecture 5 March, 2023 13 / 24

And now - branching

Condition estimates to either true or false. To calculate the condition we
can use following relational operators:

• == equal to: 3==3− > TRUE ; 4==3− >FALSE

• > greater than

• ! = not equal to

• >= greater than or equal to

• < less than

• <= less than or equal to

(ECS, VUW) ENGR101: Lecture 5 March, 2023 14 / 24

Listing 10: taking branch

#include <iostream >

int main (){

int a;

a = 3;

if (a>2){

std::cout <<"branch␣1";

} else {

std::cout <<"␣branch␣2";

}

return 0;

}

Code for conditional execution.
else branch can be missed. Then
nothing is happening if condition
estimates to false.

(ECS, VUW) ENGR101: Lecture 5 March, 2023 15 / 24

Listing 11: combining conditions

#inc l u d e <i o s t r eam>
i n t main (){
i n t d = 9 ;
boo l a = d<5;
boo l b = d>2;
s t d : : cout<<”a =”<<a<<” b=”<<b<<s t d : : e nd l ;
s t d : : cout<<”a AND b=”<<(a&&b)<<s t d : : e nd l ;
s t d : : cout<<”a OR b=”<<(a | | b)<<s t d : : e nd l ;
s t d : : cout<<”NOT a=”<<(!a)<<s t d : : e nd l ;

}

Several conditions can be combined using AND (TRUE if both arguments
are TRUE) and OR (TRUE if at least one argument is TRUE) operators.
Condition can be inverted (NOT operator).

(ECS, VUW) ENGR101: Lecture 5 March, 2023 16 / 24

Listing 12: combining conditions

#inc l u d e <i o s t r eam>
i n t main (){
i n t d = 9 ;
boo l a = d>5;
boo l b = d>2;
s t d : : cout<<”a =”<<a<<” b=”<<b<<s t d : : e nd l ;
s t d : : cout<<”a AND b=”<<(a&&b)<<s t d : : e nd l ;
s t d : : cout<<”a OR b=”<<(a | | b)<<s t d : : e nd l ;
s t d : : cout<<”NOT a=”<<(!a)<<s t d : : e nd l ;

}

Several conditions can be combined using AND (TRUE if both arguments
are TRUE) and OR (TRUE if at least one argument id TRUE) operators.
Condition can be inverted (NOT operator).

(ECS, VUW) ENGR101: Lecture 5 March, 2023 17 / 24

ternary operator - conditional assignment shortcut

Listing 13: assignment shortcut

#include <iostream >

int main (){

int a;

a = 3;

int b;

b = (a >2)?45:34;

std::cout <<b;

}

Very common situation is when you
want to assign different values to the
variable based on some condition.
There is shortcut for that.

• if a > 2 is true then b becomes
45

• if a > 2 is false then b becomes
34

(ECS, VUW) ENGR101: Lecture 5 March, 2023 18 / 24

Iterations - by examples
Sometimes we need to repeat calculations several times.
Say, we want to print numbers from 1 to 6. We can go,
cout << 1; cout << 2...a lot of typing

There is shortcut for it. for operator:

Listing 14: for

for (int i = 1 ; i < 6 ; i= i+1) {

cout <<i<<endl;

}

for value of i from that to this do that All
shown in green logic is implemented by one
line:

Listing 15: for

for (int i = 1 ; i < 6 ; i= i+1)

(ECS, VUW) ENGR101: Lecture 5 March, 2023 19 / 24

Question?

Listing 16: Caption

#include <iostream >

using namespace std;

int main (){

for (int i = 0 ; i < 6 ; i=i+2){

cout <<i<<"␣";

}

}

1 0 2 4

2 0 1 2 3 4 5

3 0 1 2 3 4 5 6

(ECS, VUW) ENGR101: Lecture 5 March, 2023 20 / 24

Question, again?

Listing 17: Caption

#include <iostream >

using namespace std;

int main (){

for (int i = 10 ; i < 6 ; i=i+2){

cout <<i<<"␣";

}

}

1 0 2 4

2

3 10 8 6 4 2 0

(ECS, VUW) ENGR101: Lecture 5 March, 2023 21 / 24

Question, again?

Listing 18: Caption

#include <iostream >

using namespace std;

int main (){

for (int i = 0 ; i < 6 ; i=i+1){

if (i > 2){

cout <<i<<"␣";

}

}

}

1 0 2 4

2 3 4 5

3 0 1 2 3 4 5

(ECS, VUW) ENGR101: Lecture 5 March, 2023 22 / 24

How to to work with an array of ints?

Usually you use for() to traverse array element indexes.

Listing 19: Caption

#include <iostream >

using namespace std;

int main (){

int a[5];

for (int i = 0 ; i < 5;i = i + 1){

a[i] = i*2;

}

for (int i = 0 ; i < 5;i = i + 1){

cout <<a[i]<<"␣";

}

return 0;

}

1 0 2 4 6 8

2 3 4 5

3 0 1 2 3 4 5

(ECS, VUW) ENGR101: Lecture 5 March, 2023 23 / 24

That was a lot.
Questions?

(ECS, VUW) ENGR101: Lecture 5 March, 2023 24 / 24

