
ENGR101: Lecture 2
Computer architecture. Binary numbers.

ECS, VUW

2024

(ECS, VUW) ENGR101: Lecture 2 2024 1 / 33

What we cover today?

1 Computer architecture, basic hardware

2 Machine codes

3 Binary numbers

4 Conversion from binary to decimal and back

5 Hexadecimal

(ECS, VUW) ENGR101: Lecture 2 2024 2 / 33

Computer architecture 1: What is inside?

Figure: Computer architecture

• There are three major parts

1 Processor (CPU, central
processing unit)

2 Memory
3 Input-output

• All these parts are connected by
buses. Not this bus

Data(numbers) travel between these parts along the buses.

(ECS, VUW) ENGR101: Lecture 2 2024 3 / 33

Memory - where all the smarts are

MEMORY

CONTROL

ADDRESS

0

DATA

(READ;WRI TE)
123

251

2

3

43

211

4294967296

. . .

read

3

211

address value • Set of numbered boxes. Box number
called address (like street house
number)

• Inside each box there is a number . It is
called value.

• Can read value from the box of known
address

• Can write value to the box. Old value is
gone (overwritten).

• If we want to work with the value - we
have to know the address

It is called RAM - random access memory (random - you can read/write
using any valid address).

(ECS, VUW) ENGR101: Lecture 2 2024 4 / 33

Memory - tradeoff

• There is a trade-off between memory
size and speed

• There is hardware which allows fast
read/write but it is bulky (Static RAM)

• There is hardware with higher storage
density (Dynamic RAM) but it is slow

• To get best of both memory is arranged
in layers

(ECS, VUW) ENGR101: Lecture 2 2024 5 / 33

Figure: Memory hardware

• Layers are:
• registers (super fast)
• cache (fast)
• RAM (hmm)
• Hard Disk (slow as)

• Computer constantly
tries to guess which data
should be in fast memory
(cache) right now

Lesson from that - keep your data localized if you want speed (much more
on it later).

(ECS, VUW) ENGR101: Lecture 2 2024 6 / 33

Processor

Looks like:

Usually shown as:

• Calculator, basically. But fast. ALU and
control unit.

• ALU stands for Arithmetic Logic Unit

• Takes up to two numbers (operands) -
from registers

• Does some operation to them: add,
subtract, etc.

• Gets the result. Puts it into register.

• Control Unit sets ALU for the operation

(ECS, VUW) ENGR101: Lecture 2 2024 7 / 33

Bus

Figure: Moves numbers around

‘

• Bus is bunch of wires and set of rules

• Bus protocol determines how numbers
are moved from the source to the
destination

‘

(ECS, VUW) ENGR101: Lecture 2 2024 8 / 33

Input/Output

Keyboard, mouse, camera, files on
hard drive, etc. Standard PCs have
inputs/outputs which can
take/produce digital signals only (i.e.
numbers). Sound cards? Sound is
not a number... Or is it?

Figure:

(ECS, VUW) ENGR101: Lecture 2 2024 9 / 33

It is digital

Looking at very big picture, computers take numbers in, do something
with these numbers and produce output (numbers again).
It is numbers all the way down.
Way different from biological wetware.
If everything is stored as numbers how computer knows what to do? How
programs are represented as numbers?
Answer is called encoding - everybody agreed that number means
something else. There is a lot of encoding happening in software.
First we have a look how programs (instructions) are encoded.

(ECS, VUW) ENGR101: Lecture 2 2024 10 / 33

Stored program concept - 1

John von Neumann and Alan Turing both proposed the stored program
concept in separate publications in 1945.

Figure:

Program is a sequence of
instructions. Instructions for the
processor are stored in memory. Each
instruction is fetched from main
memory one at a time, decoded and
executed in the processor. CPU
instructions are stored in memory as
numbers.
Data also are stored in the memory.
Ii it is same memory - then it is
called von Newman architecture.

(ECS, VUW) ENGR101: Lecture 2 2024 11 / 33

Harvard architecture

• Sometimes different
architecture is used -
program and data are
stored in different
memory hardware.

• Program usually can not
be modified without
physical access to the
computer and specialized
hardware.

PCs follow von Newman architecture. Software can be modified easily and
even remotely.

(ECS, VUW) ENGR101: Lecture 2 2024 12 / 33

Program stored as set of numbers

If we managed to open program file we will see something like:
0x 60 00 00 80
0x A4 00 00 00
0x 60 01 00 84
0x A4 01 01 00
0x 60 02 00 00
0x 60 03 00 04
0x 60 04 00 00
Each of these numbers is instruction for processor to do some operation.

(ECS, VUW) ENGR101: Lecture 2 2024 13 / 33

Numbers and nothing else. Works in steps.

How to produce this sequence - that is a BIG question.
Machine codes are executed one after another in cycle:

1 Fetch - Retrieve an instruction from the memory.

2 Decode - Translate the retrieved instruction into a series of computer
commands.

3 Execute - Execute the computer commands.

1 can be read or write
2 can be calculation

Each step of the cycle is done on clock tick. Clock is ticking fast - billions
of times per second.

(ECS, VUW) ENGR101: Lecture 2 2024 14 / 33

Summary so far:

• Numbers and nothing else

• All CPU instructions are stored in memory as numbers too. And first
computers were programmed entering these numbers directly.

• Of course, it is hard to remember codes for all instructions and
memory addresses. Sometimes programmers have to do that, but
now-days it is an exception.

• There are programs which convert human-readable commands into
machine codes.

We will look at how to engage these programs during next lecture.
For now we will look at how numbers are represented inside the computer
and what are the limitations of this representation.

(ECS, VUW) ENGR101: Lecture 2 2024 15 / 33

Numbers: Decimal system

We are used to decimal system - we use 10 digits.
So if we start counting... 1,2,3,4,5,6,7,8,9..
Now we run out of symbols to write the number (10), what we do?
When we want to represent 10 we use next digit to the left:
10 = 10*1 + 0.
It is positional system and value in second digit is count of how many 10s
there are in this number.

(ECS, VUW) ENGR101: Lecture 2 2024 16 / 33

Positional number system
Contribution of the value of every digit depends on which digit it is -
system we use is positional.

Digit digit5 digit4 digit3 digit2 digit1

Weight 104 = 10000 1000 = 103 100 = 102 10 = 101 1 = 100

Example: Number 567 can be written as:
567 = 5 * 100 + 6 * 10 + 7 *1
Not all number systems are positional. Roman, for example, is not.

Question: Why we use 10 symbols?

1 We have 10 fingers

2 10 is magic number

Other systems are possible. What is used in computing? It is determined
by hardware.

(ECS, VUW) ENGR101: Lecture 2 2024 17 / 33

Computing hardware - switches(transistors)

You can build any digital circuit using switches only!

• In computing binary system is used because
switches are base of computer hardware.
Switch has 2 states: ON and OFF.

• In electronics transistors are used as switching
elements

• Transistor currently is 5 nm long. Atom of
silicon is 100 pm long. So one transistor is
about 100 atoms big.

• How many transistors are in average computer?

(ECS, VUW) ENGR101: Lecture 2 2024 18 / 33

Moore’s law (not a law of nature, more of an observation)

(ECS, VUW) ENGR101: Lecture 2 2024 19 / 33

How fast can you flip the switch?

Clock rate determines how fast transistor can switch.
Bad news is that there is a limit on clock rate - and we reached it. Speed is
stagnant at about 4 GHz (4 billion times per second). Interesting times...

(ECS, VUW) ENGR101: Lecture 2 2024 20 / 33

Clock rate is not same as instructions rate.
Each instruction can take several clock cycles. Sometimes a lot more.
Bottleneck usually is exchange with memory - can take up to 70 clock
cycles.
It is measured in CPI (cycles per instruction). Computer with good
architecture and low clock rate can outperform badly designed processor
with high clock rate.

(ECS, VUW) ENGR101: Lecture 2 2024 21 / 33

Counting in binary 1 - binary digit weights

In decimal we use 10 symbols for each position.
For decimal system:

Digit digit5 digit4 digit3 digit2 digit1

Weight 104 = 10000 1000 = 103 100 = 102 10 = 101 1 = 100

In binary we use 2 symbols for each position.
For binary system digit weights are:

Digit digit6 digit5 digit4 digit3 digit2 digit1

Weight 32 = 25 16 = 24 8 = 23 4 = 22 2 = 21 1 = 20

(ECS, VUW) ENGR101: Lecture 2 2024 22 / 33

binary to decimal conversion -1

How get value of decimal numbers?
567, for example

• Start from leftmost digit. 567
Take value of the digit (5). Multiply with weight(100). Remember
result -500.

• Move one digit right 567
Take value of the digit (6). Multiply with weight(10). Remember
result - 60.

• Move one digit right 567
Take value of the digit (7). Multiply with weight(1). Remember
result - 7.

• Add all results together. 567 = 500 + 60 + 7

(ECS, VUW) ENGR101: Lecture 2 2024 23 / 33

binary to decimal conversion -2
Follow same procedure for binary number: 10112 ?
Note: We will use subscripts to denote base of the system.

• Start from leftmost digit. 1011
Take value of the digit (1). Multiply with weight of the digit -8. Remember

result - 8.

• Move one digit right 1011
Take value of the digit (0). Multiply with weight of this digit-4. Remember

result - 0.

• Move one digit right 1011
Take value of the digit (1). Multiply with weight - 2. Remember result - 2.

• Move one digit right 1011
Take value of the digit (1). Multiply with weight - 1. Remember result - 1.

• Add all results together. 10112 = 8 + 0 + 2 +1 = 1110
Digit digit6 digit5 digit4 digit3 digit2 digit1

Weight 32 = 25 16 = 24 8 = 23 4 = 22 2 = 21 1 = 20

(ECS, VUW) ENGR101: Lecture 2 2024 24 / 33

Decimal to binary - 1

We use this table:
Digit digit6 digit5 digit4 digit3 digit2 digit1

Weight 32 = 25 16 = 24 8 = 23 4 = 22 2 = 21 1 = 20
but

do it backward.
For example: we want binary representation of 25. We start with
XXXXXX - and replace X with 1 or 0

• Look at the table

• How many ”32”s are in 25 - none. Here goes - 0XXXXX

• How mant ”16”s are in 25 - one. It becomes - 01XXXX (which is at
least 16, can be bigger)

• What remains? 25 - 16 = 9

(ECS, VUW) ENGR101: Lecture 2 2024 25 / 33

Decimal to binary - 2

• Now we have 01XXXX and 9 to represent in XXXX

• How many ”8” in - one. Put 1 into position for 8 : 011XXX

• Now we have 011XXX which is at least 16+8=24, but can be bigger

• 1 remains. There is no 4 in 1 : 0110XX

• 1 still remains. We can not fit 2 into 1. Here goes: 01100X

• 1 still remains. And we can fit it. Here goes: 011001

2510 = 0110012

(ECS, VUW) ENGR101: Lecture 2 2024 26 / 33

Question time!

• Convert 0010 to decimal:
• A: 1
• B: 2
• C: 8

• Convert 1010 to decimal:
• A: 2
• B: 8
• C: 10

(ECS, VUW) ENGR101: Lecture 2 2024 27 / 33

Question time - carry on!

Digit digit6 digit5 digit4 digit3 digit2 digit1
Weight 32 = 25 16 = 24 8 = 23 4 = 22 2 = 21 1 = 20

• Convert 7 to binary:
• A: 0111
• B: 1100
• C: 1001

• Convert 2 to binary:
• A: 0010
• B: 0011
• C: 1011

(ECS, VUW) ENGR101: Lecture 2 2024 28 / 33

Bits, bytes, words

Every digit of a binary number is called bit (BInary digiT).

Intel C4004 microprocessor,Intel,1971 - 4 bits word
Intel 8008,1972 - 8 bits word.
Intel 8086,1976 - 16 bits word (PC original design).
Now most PCs use 64 bit processors. Software moving from 32 bits to 64.

(ECS, VUW) ENGR101: Lecture 2 2024 29 / 33

Hexadecimal

Binary is an underlying type for any digital circuits, computers included.
But to write and read numbers in binary notation can be tedious.
There is an another notation which makes it easier and so is used quite
often.
Hexadecimal: In hexadecimal base 16 is used. So we start counting 0 1 2
3 4 5 6 7 8 9... Oops, we run out of symbols.
Letters are used: A instead of 10
B instead of 12
C instead of 13
D instead of 14
E instead of 15
F instead of 16

(ECS, VUW) ENGR101: Lecture 2 2024 30 / 33

Digit digit5 digit4 digit3 digit2 digit1

Weight 65536 = 164 4066 = 163 256 = 162 16 = 161 1 = 160

We can squeeze bigger value in same number of digits.

(ECS, VUW) ENGR101: Lecture 2 2024 31 / 33

Decimal Binary Hex

0 0000 0000 0

1 0000 0001 1

2 0000 0010 2

10 0000 1010 A

11 0000 1011 B

15 0000 1111 F

16 0001 0000 10

254 1111 1110 FE

255 1111 1111 FF

• Two hexadecimal digits
correspond exactly to one byte,
unlike the strange 255 limit in
decimal, the hexadecimal byte
limit is FF.

• In programming languages, a
hexadecimal number is usually
prefixed with ’0x’ to make the
compiler aware that you are
using hexadecimal.

(ECS, VUW) ENGR101: Lecture 2 2024 32 / 33

Question

Digit digit5 digit4 digit3 digit2 digit1

Weight 65536 = 164 4066 = 163 256 = 162 16 = 161 1 = 160

Convert hexadecimal 0x11 to Decimal:

• A: 16 (decimal)

• B: 17 (decimal)

• C: 11 (decimal)

(ECS, VUW) ENGR101: Lecture 2 2024 33 / 33

