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Obstacle Avoidance
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Avoiding large spheres

n Spheres are easy. Approximate a shape with 
spheres.

n Project a cylinder forward from the boid
n If it intersects a sphere steer to avoid
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Craig Reynolds has written extensively about various strategies for obstacle avoidance in this informal paper:
https://www.red3d.com/cwr/nobump/nobump.html 
The diagram is from:
http://www.red3d.com/cwr/steer/gdc99/ 

https://www.red3d.com/cwr/nobump/nobump.html
http://www.red3d.com/cwr/steer/gdc99/


Intersect a line and a sphere?

n Equation of a line

n Equation of a sphere
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O
DP(t) =O+ tD

P−C = R RC



Solve that quadratic equation
5

t2 D•D( )+ 2t O−C[ ]•D( )+ O−C[ ]• O−C[ ]( ) = R2

t2 D•D( )+ t 2 O−C[ ]•D( )+ O−C[ ]• O−C[ ]− R2( ) = 0
at2 + bt + c = 0
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Solve that quadratic equation
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But wait, there’s more to consider…

n Boid is going to hit sphere
n Boid is going to just skim sphere
n Boid is inside sphere
n Boid is going to miss sphere
n Sphere is behind boid
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Position of boid



How do we calculate that force?

n The force must push us away from the sphere 
that we are going to hit
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What do we know?

n We know O, D, C, t, P(t)
n We want f
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Closest point on a line
n P(s) is the point on line AB that is closest to point C
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l = AC cosθ = AC•AB
AB

s = l
AB
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Getting a vector at right angles to D

n Our force f is a vector that points in the same 
direction as CE
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Ray Tracing 1

fundamentals of ray tracing
ray/sphere intersection

calculating normal vectors
how illumination works
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What is Raytracing?

Raytracing is the other main rendering algorithm in Computer Graphics. Compared 
to rasterization, raytracing easily supports much more complex effects such as 
reflection, refraction, and ambient lighting, at a significant cost to performance.

Raytracing is the basis of physically-based rendering and is our best tool for 
rendering photorealistic images. It’s also widely used in creative coding and 
generative artwork due to its flexibility.

Historically, raytracing has only been used for films and other offline media due to 
its computation time. But it has recently become infamous in gaming with the 
introduction of hardware-accelerated raytracing into modern GPUs (RTX, RDNA2), 
which enable real-time performance for limited raytracing. It’s expected that 
raytracing will play a larger and larger role in real-time graphics in years to come.



Ray tracing
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Multiple reflections
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• Effects: reflection, refraction, transparency, depth-of-
field blur, and bumpy surfaces

• Ray tracing has become more dominant in recent 
years



More details on the basic idea
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● Specification of a camera (position, orientation)
● Specification of an image plane (distance from 

camera, aspect ratio, resolution in pixels)
● Specification of a scene comprising one or more 

objects and one or more light sources
● Ability to cast view rays from the camera position 

through the centre of each pixel in the image
● Ability to intersect a ray with all objects in the scene 
● Ability to find the normal at the intersection point
● Ability to cast shadow rays from the intersection point 

to every light source in the scene
● Ability to calculate the colour at the intersection point, 

given all of the details about the object and its 
material
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The basic algorithm
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for each pixel (i,j) do {

 view_ray = CreateRayForPixel( i, j ) ;

 tNear = INFINITY

 objNear = NULL 

 for each object in objects do {

  t = FindIntersection( view_ray, object )

  if( t < tnear ) {

   tNear = t

   objNear = object

  }

 }

 if( objNear ≠ NULL) {

  pixel_colour(i,j) = FindColour( tNear, objNear ) ;

 }

} 



Rays

A ray is a line through space which has a starting point, but no end point. A ray 
has an origin and a direction.

We can generate every point on a ray using the parametric formula
p + td, for every value of t >= 0. This equation will help us find algorithms to find 
intersections of rays with solid objects.

We usually think of rays as the path taken by photon packets emitted by a light 
source.

Radiance is defined as colour and brightness of the light energy travelling along a 
ray. Radiance is the primary quantity that we work with in physically-based 
rendering.



Global Illumination

In real life, light that’s reflected off objects does all go directly to our eyes. For the 
majority of materials, light is scattered in random directions, often multiple times 
between objects in the world.

This creates much of the visual complexity of a scene: the corners of the room are 
slightly darker then the walls, and nearby objects of different colours have their 
colours mix slightly. No surface in the scene is completely black, even if there is no 
direct light hitting it.

Accurately accounting for all light bouncing around in a scene is called global 
illumination, and is the main benefit of raytracing. Phong shading is not capable of 
global illumination; its ambient term is intended to approximate indirect lighting.



Raytracing Intuition

Raytracing is an intuitive and simple algorithm based on a small set of common-
sense observations about the world.

● The image you see is based on the pattern of light hitting your retina.
○ The same applies for a camera - we’ll often use camera terminology such as lens and film.

● Light travels in straight lines (in >99.9% of observable cases), and can be 
reflected or refracted by objects.

● When you see an opaque object, you are seeing light which has been reflected 
off its surface and towards your eyes.
○ Shadows and dark-coloured objects are the reduction or absence of light hitting your retina at that 

particular position.

● The colour of reflected light depends on both the colour of the material and the 
colour of the light before it was reflected.



Key Idea

To photorealistically recreate an image, all we need to do is accurately figure out how much 
(and what colour) light is arriving at each point on our retina.

The naive approach would be to simulate all of the light rays emitted by every light source in the 
scene, and count how many enter your eye. The vast majority do not, so this is inefficient.

Instead, we’ll shoot a ray back out away from the eye. This is 
counter intuitive, but it has the huge advantage that we only 
calculate light which eventually ends up in the final image. We’ll 
do this for every pixel of our screen, to build a complete image.



Forward or backward ray tracing?
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Forward ray tracing:
trace rays from lights

Backward ray tracing:
trace rays from eye



Firing the Primary Ray

The first step of raytracing is to “shoot” a primary ray out of the pixel, and find where it intersects 
the scene geometry. This is significant - it tells us the specific point on the specific object which is 
responsible for the colour of this pixel.

We can use our knowledge about the object this to calculate the 
light which reaches the retina. 

If the object is a light source (eg: a light bulb), then the light 
received by this pixel is simply the light emitted by the bulb.

If the object is opaque, we need to do a bit more work...



Surface Reflectance

Opaque objects do not emit light themselves - they are visible because they reflect (and usually scatter) 
light from other sources.

We can calculate the light going back along the primary ray (which will 
determine the pixel colour) if we know two things:

● The locations of all light sources in the scene
● How light, coming from a specific direction, is reflected by the 

surface back along the primary ray. This depends entirely on the 
material.

To calculate the pixel colour value we iterate through every light source. We then calculate how much 
of that light is being reflected by the object back along the primary ray. Finally, we take the sum of 
these individual contributions to give us the final result.



Example: Single Light Source

For the simplest example we use a single light source with a diffuse (aka 
Lambertian) material. A diffuse material scatters incoming light equally in all 
directions, according to the cosine law.

L refers to radiance values - Li for incident light (ie: from the light source) and 
Lo for outgoing light (ie: back along the primary ray). In other words, they are 
the quantities of light travelling along the wi and wo rays.



Example: Multiple Light Sources

With multiple light sources and a single diffuse material, it’s much the same. We 
iterate over every light source, and take the sum of their cosine laws. 

This accounts for the individual colours and brightnesses of each light, as well as 
their relative angles to the surfaces. Each wi(j) and Li(j) refers to the vector to, and 
radiance emitted by the j’th light source.



Secondary Rays (aka Shadow Rays)

So far, we’ve assumed that all light sources will affect the final 
colour of the pixel. But we need to account for occlusion - where the 
light source is obstructed by another object in the scene. This is 
what creates shadows in real life.

We need to ensure that there is an unobstructed path from each 
light source to the point on the surface that was hit by the primary 
ray. If there isn’t, we discard that light source’s contribution.

We can test this by shooting a secondary ray from the point of 
intersection towards the light. If the ray intersects another object 
before the light source, then it is occluded.



Reflection and Refraction

The first area where raytracing really shines is with mirror-like and glass-like 
materials.

To implement a mirror, we can simply shoot another ray from the point that the 
primary ray hit, in the direction that it would be reflected.

To implement refractions, we shoot a ray inside the object at 
the angle it would refracted at. We also need to take into 
account the small amount of light which is reflected off the 
surface, so we combine this with a reflected ray too.



Whitted Raytracer

So far, this covers everything you need to implement 
a “Whitted” raytracer. This is the model developed for 
the first published paper on raytracing by Turner 
Whitted in 1979.

At the time, this was a groundbreaking result, but with 
modern computation power we can easily extend this 
model to produce much more interesting images.



Advanced Materials

So far we’ve only looked at the most basic material. But this approach 
works for any material we can find a mathematical model for.

In the previous slides, we used a Lambertian model, which is good for 
simple materials like paper and wall paint.

Extending the Lambertian model, we could also use the Phong model, 
which adds specular highlights. This is great for materials like plastic 
and rubber.

We can extend this technique with more advanced material models to 
render any object. We just have to come up with an answer to the 
important question: how is light reflected off this surface?



Bidirectional Reflectance Distribution Function 
(BRDF)

The BRDF describes exactly how light is reflected by a material. Each material has its own 
BRDF, and developing new ones is an active area of research. Given two direction vectors 
(incident light direction, and viewer direction), the BRDF tells us what proportion of the radiance 
along the incident ray is reflected along the outgoing ray.

The Lambertian and Phong illumination models are both examples of BRDFs, and there are 
many, many more, which will be covered in further CGRA courses.



Sphere-ray intersection
34

R
O

CD

P(t0)

P(t1)a =D•D
b = 2 O−C[ ]•D
c = O−C[ ]• O−C[ ]− R2

at2 + bt + c = 0



What information do we need?

n We know:
O, D, C, R, t

n Easy to calculate: 
P(t)

n We also need:
n N – the normal

n L – vector to light
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Shadow rays
n Determine which 

lights are visible
n Use ray tracing 

method with origin 
at P(t) and vector 
Li
Q(s)=P(t)+sLi

n L3 can be 
discarded based on 
testing the normal
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Intersection with the object itself

n When intersecting that shadow ray with the 
object itself, we may get the same intersection 
point at time t close to 0. This can be caused 
due to numerical (precision) issues.
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How do surfaces reflect light?
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Comments on reflection
n the surface can absorb some wavelengths of light

n e.g. shiny gold or shiny copper

n specular reflection has “interesting” properties at 
glancing angles owing to occlusion of micro-facets by 
one another

n plastics are good examples of surfaces with:
n specular reflection in the light’s colour
n diffuse reflection in the plastic’s colour
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Diffuse shading calculation

n Lambertian reflection
n The incoming light is 

reflected evenly in all 
directions

n The intensity depends 
on the angle
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θ I = Ilkd cosθ
= Ilkd (N •L)

N
L



n L is a normalised vector pointing in the direction 
of the light source

n N is the normal to the object at the intersection 
point

n Il is the intensity of the light source as seen from 
the intersection point

n kd is the proportion of light which is diffusely 
reflected by the surface, it is a property of the 
surfaces material
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How bright is that light?

n Directional lights
n Light is at infinity so rays from the light are parallel
n Light defined by direction and intensity

n Point light
n Light at some position in space at distance 𝑑 with 

intensity IPL

n Intensity at the intersection point is Il = IPL / 4πd2 

(sphere surface area)
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Phong specular reflection

n The Phong model is an 
easy-to-calculate 
approximation of 
specular reflection
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n L is a normalised vector pointing in the direction of the 
light source

n R is the normalised vector of perfect reflection

n N is the normal to the polygon

n V is a normalised vector pointing at the viewer (D) 
(changes as the camera moves)

n Il is the intensity of the light source as seen from the 
intersection point

n ks is the proportion of light which is specularly 
reflected by the surface

n n is Phong’s ad hoc “roughness” coefficient

n I is the intensity of the specularly reflected light 
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R

Calculating R and V
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Examples
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How good an approximation is this?
n Lambertian diffuse reflection

n a good approximation to physical reality

n Phong specular reflection
n a rough approximation to physical reality

n but no consideration of inter-object reflections
n all illumination is directly from the light
n so we cheat!
n assume that all light reflected off all other surfaces can be 

amalgamated (joined) into a single constant term: “ambient 
illumination”
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Ambient illumination

n Ambient illumination is not realistic but it makes 
objects look better

n Without it, any part of the object that isn’t lit 
would be black
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ambient     +     diffuse      +    specular     = simple shading



Shading: overall equation
n the overall shading equation is thus

ambient illumination plus
diffuse and specular reflections
from each light source

n the more lights there are in the scene, the longer 
this calculation will take
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