
Lecture 16-17:
Boids recap and introduction to ray tracing

CGRA 354 : Computer Graphics Programming

Instructor: Alex Doronin
Cotton Level 3, Office 330
alex.doronin@vuw.ac.nz

With slides from: Holly Rushmeier, Yale; Steve Marschner, Cornell; Taehyun Rhee, CMIC; Zohar Levi, Marc Gluyas, ECS;

Obstacle Avoidance
2

Avoiding large spheres

n Spheres are easy. Approximate a shape with
spheres.

n Project a cylinder forward from the boid
n If it intersects a sphere steer to avoid

3

Craig Reynolds has written extensively about various strategies for obstacle avoidance in this informal paper:
https://www.red3d.com/cwr/nobump/nobump.html
The diagram is from:
http://www.red3d.com/cwr/steer/gdc99/

https://www.red3d.com/cwr/nobump/nobump.html
http://www.red3d.com/cwr/steer/gdc99/

Intersect a line and a sphere?

n Equation of a line

n Equation of a sphere

4

O
DP(t) =O+ tD

P−C = R RC

Solve that quadratic equation
5

t2 D•D()+ 2t O−C[]•D()+ O−C[]• O−C[]() = R2

t2 D•D()+ t 2 O−C[]•D()+ O−C[]• O−C[]− R2() = 0
at2 + bt + c = 0

R
O

CD

P(t0)

P(t1)

Solve that quadratic equation
6

R
O

CD

P(t0)

P(t1)

a =D•D
b = 2 O−C[]•D
c = O−C[]• O−C[]− R2

at2 + bt + c = 0

But wait, there’s more to consider…

n Boid is going to hit sphere
n Boid is going to just skim sphere
n Boid is inside sphere
n Boid is going to miss sphere
n Sphere is behind boid

7

Position of boid

How do we calculate that force?

n The force must push us away from the sphere
that we are going to hit

8

What do we know?

n We know O, D, C, t, P(t)
n We want f

9

O
C

D

P(t)

f

Closest point on a line
n P(s) is the point on line AB that is closest to point C

10

l = AC cosθ = AC•AB
AB

s = l
AB

P(s) = (1− s)A+ sB
θ

l

P(s)

C

B

A

Getting a vector at right angles to D

n Our force f is a vector that points in the same
direction as CE

11

O
C

Df

E
OE = OC cosθ = OC•D

D

E =O+ OE D
D

f = CE
CE

θ

Ray Tracing 1

fundamentals of ray tracing
ray/sphere intersection

calculating normal vectors
how illumination works

12

What is Raytracing?

Raytracing is the other main rendering algorithm in Computer Graphics. Compared
to rasterization, raytracing easily supports much more complex effects such as
reflection, refraction, and ambient lighting, at a significant cost to performance.

Raytracing is the basis of physically-based rendering and is our best tool for
rendering photorealistic images. It’s also widely used in creative coding and
generative artwork due to its flexibility.

Historically, raytracing has only been used for films and other offline media due to
its computation time. But it has recently become infamous in gaming with the
introduction of hardware-accelerated raytracing into modern GPUs (RTX, RDNA2),
which enable real-time performance for limited raytracing. It’s expected that
raytracing will play a larger and larger role in real-time graphics in years to come.

Ray tracing

14

15

Multiple reflections

16

• Effects: reflection, refraction, transparency, depth-of-
field blur, and bumpy surfaces

• Ray tracing has become more dominant in recent
years

More details on the basic idea

17

● Specification of a camera (position, orientation)
● Specification of an image plane (distance from

camera, aspect ratio, resolution in pixels)
● Specification of a scene comprising one or more

objects and one or more light sources
● Ability to cast view rays from the camera position

through the centre of each pixel in the image
● Ability to intersect a ray with all objects in the scene
● Ability to find the normal at the intersection point
● Ability to cast shadow rays from the intersection point

to every light source in the scene
● Ability to calculate the colour at the intersection point,

given all of the details about the object and its
material

18

The basic algorithm

19

for each pixel (i,j) do {

 view_ray = CreateRayForPixel(i, j) ;

 tNear = INFINITY

 objNear = NULL

 for each object in objects do {

 t = FindIntersection(view_ray, object)

 if(t < tnear) {

 tNear = t

 objNear = object

 }

 }

 if(objNear ≠ NULL) {

 pixel_colour(i,j) = FindColour(tNear, objNear) ;

 }

}

Rays

A ray is a line through space which has a starting point, but no end point. A ray
has an origin and a direction.

We can generate every point on a ray using the parametric formula
p + td, for every value of t >= 0. This equation will help us find algorithms to find
intersections of rays with solid objects.

We usually think of rays as the path taken by photon packets emitted by a light
source.

Radiance is defined as colour and brightness of the light energy travelling along a
ray. Radiance is the primary quantity that we work with in physically-based
rendering.

Global Illumination

In real life, light that’s reflected off objects does all go directly to our eyes. For the
majority of materials, light is scattered in random directions, often multiple times
between objects in the world.

This creates much of the visual complexity of a scene: the corners of the room are
slightly darker then the walls, and nearby objects of different colours have their
colours mix slightly. No surface in the scene is completely black, even if there is no
direct light hitting it.

Accurately accounting for all light bouncing around in a scene is called global
illumination, and is the main benefit of raytracing. Phong shading is not capable of
global illumination; its ambient term is intended to approximate indirect lighting.

Raytracing Intuition

Raytracing is an intuitive and simple algorithm based on a small set of common-
sense observations about the world.

● The image you see is based on the pattern of light hitting your retina.
○ The same applies for a camera - we’ll often use camera terminology such as lens and film.

● Light travels in straight lines (in >99.9% of observable cases), and can be
reflected or refracted by objects.

● When you see an opaque object, you are seeing light which has been reflected
off its surface and towards your eyes.
○ Shadows and dark-coloured objects are the reduction or absence of light hitting your retina at that

particular position.

● The colour of reflected light depends on both the colour of the material and the
colour of the light before it was reflected.

Key Idea

To photorealistically recreate an image, all we need to do is accurately figure out how much
(and what colour) light is arriving at each point on our retina.

The naive approach would be to simulate all of the light rays emitted by every light source in the
scene, and count how many enter your eye. The vast majority do not, so this is inefficient.

Instead, we’ll shoot a ray back out away from the eye. This is
counter intuitive, but it has the huge advantage that we only
calculate light which eventually ends up in the final image. We’ll
do this for every pixel of our screen, to build a complete image.

Forward or backward ray tracing?

24

Forward ray tracing:
trace rays from lights

Backward ray tracing:
trace rays from eye

Firing the Primary Ray

The first step of raytracing is to “shoot” a primary ray out of the pixel, and find where it intersects
the scene geometry. This is significant - it tells us the specific point on the specific object which is
responsible for the colour of this pixel.

We can use our knowledge about the object this to calculate the
light which reaches the retina.

If the object is a light source (eg: a light bulb), then the light
received by this pixel is simply the light emitted by the bulb.

If the object is opaque, we need to do a bit more work...

Surface Reflectance

Opaque objects do not emit light themselves - they are visible because they reflect (and usually scatter)
light from other sources.

We can calculate the light going back along the primary ray (which will
determine the pixel colour) if we know two things:

● The locations of all light sources in the scene
● How light, coming from a specific direction, is reflected by the

surface back along the primary ray. This depends entirely on the
material.

To calculate the pixel colour value we iterate through every light source. We then calculate how much
of that light is being reflected by the object back along the primary ray. Finally, we take the sum of
these individual contributions to give us the final result.

Example: Single Light Source

For the simplest example we use a single light source with a diffuse (aka
Lambertian) material. A diffuse material scatters incoming light equally in all
directions, according to the cosine law.

L refers to radiance values - Li for incident light (ie: from the light source) and
Lo for outgoing light (ie: back along the primary ray). In other words, they are
the quantities of light travelling along the wi and wo rays.

Example: Multiple Light Sources

With multiple light sources and a single diffuse material, it’s much the same. We
iterate over every light source, and take the sum of their cosine laws.

This accounts for the individual colours and brightnesses of each light, as well as
their relative angles to the surfaces. Each wi(j) and Li(j) refers to the vector to, and
radiance emitted by the j’th light source.

Secondary Rays (aka Shadow Rays)

So far, we’ve assumed that all light sources will affect the final
colour of the pixel. But we need to account for occlusion - where the
light source is obstructed by another object in the scene. This is
what creates shadows in real life.

We need to ensure that there is an unobstructed path from each
light source to the point on the surface that was hit by the primary
ray. If there isn’t, we discard that light source’s contribution.

We can test this by shooting a secondary ray from the point of
intersection towards the light. If the ray intersects another object
before the light source, then it is occluded.

Reflection and Refraction

The first area where raytracing really shines is with mirror-like and glass-like
materials.

To implement a mirror, we can simply shoot another ray from the point that the
primary ray hit, in the direction that it would be reflected.

To implement refractions, we shoot a ray inside the object at
the angle it would refracted at. We also need to take into
account the small amount of light which is reflected off the
surface, so we combine this with a reflected ray too.

Whitted Raytracer

So far, this covers everything you need to implement
a “Whitted” raytracer. This is the model developed for
the first published paper on raytracing by Turner
Whitted in 1979.

At the time, this was a groundbreaking result, but with
modern computation power we can easily extend this
model to produce much more interesting images.

Advanced Materials

So far we’ve only looked at the most basic material. But this approach
works for any material we can find a mathematical model for.

In the previous slides, we used a Lambertian model, which is good for
simple materials like paper and wall paint.

Extending the Lambertian model, we could also use the Phong model,
which adds specular highlights. This is great for materials like plastic
and rubber.

We can extend this technique with more advanced material models to
render any object. We just have to come up with an answer to the
important question: how is light reflected off this surface?

Bidirectional Reflectance Distribution Function
(BRDF)

The BRDF describes exactly how light is reflected by a material. Each material has its own
BRDF, and developing new ones is an active area of research. Given two direction vectors
(incident light direction, and viewer direction), the BRDF tells us what proportion of the radiance
along the incident ray is reflected along the outgoing ray.

The Lambertian and Phong illumination models are both examples of BRDFs, and there are
many, many more, which will be covered in further CGRA courses.

Sphere-ray intersection
34

R
O

CD

P(t0)

P(t1)a =D•D
b = 2 O−C[]•D
c = O−C[]• O−C[]− R2

at2 + bt + c = 0

What information do we need?

n We know:
O, D, C, R, t

n Easy to calculate:
P(t)

n We also need:
n N – the normal

n L – vector to light

35

R
O

CD
P(t)

N
Li

Qi

Shadow rays
n Determine which

lights are visible
n Use ray tracing

method with origin
at P(t) and vector
Li
Q(s)=P(t)+sLi

n L3 can be
discarded based on
testing the normal

36

O
D

P(t)

Q1

Q2
Q3

N

L2L1
L3

Intersection with the object itself

n When intersecting that shadow ray with the
object itself, we may get the same intersection
point at time t close to 0. This can be caused
due to numerical (precision) issues.

37

How do surfaces reflect light?
38

q q q q q

perfect specular
reflection
(mirror)

Imperfect specular
reflection

diffuse reflection
(Lambertian reflection)

Comments on reflection
n the surface can absorb some wavelengths of light

n e.g. shiny gold or shiny copper

n specular reflection has “interesting” properties at
glancing angles owing to occlusion of micro-facets by
one another

n plastics are good examples of surfaces with:
n specular reflection in the light’s colour
n diffuse reflection in the plastic’s colour

39

Diffuse shading calculation

n Lambertian reflection
n The incoming light is

reflected evenly in all
directions

n The intensity depends
on the angle

40

θ I = Ilkd cosθ
= Ilkd (N •L)

N
L

n L is a normalised vector pointing in the direction
of the light source

n N is the normal to the object at the intersection
point

n Il is the intensity of the light source as seen from
the intersection point

n kd is the proportion of light which is diffusely
reflected by the surface, it is a property of the
surfaces material

41

How bright is that light?

n Directional lights
n Light is at infinity so rays from the light are parallel
n Light defined by direction and intensity

n Point light
n Light at some position in space at distance 𝑑 with

intensity IPL

n Intensity at the intersection point is Il = IPL / 4πd2

(sphere surface area)

42

Phong specular reflection

n The Phong model is an
easy-to-calculate
approximation of
specular reflection

43
q q

n=1 n=3 n=7 n=20 n=40

θ θ
α

R

V

L I = Ilks cos
nα

= Ilks (R•V)
n

N

n L is a normalised vector pointing in the direction of the
light source

n R is the normalised vector of perfect reflection

n N is the normal to the polygon

n V is a normalised vector pointing at the viewer (D)
(changes as the camera moves)

n Il is the intensity of the light source as seen from the
intersection point

n ks is the proportion of light which is specularly
reflected by the surface

n n is Phong’s ad hoc “roughness” coefficient

n I is the intensity of the specularly reflected light

44

R

Calculating R and V
45

q q

θ θ
α

N

R
VL

()
NRL

NLNN
ˆ2

ˆ

=+

•=

N̂

P V = −D
D

N̂2

Examples
46

diffuse reflection

specular
reflection

100% 75% 50% 25% 0%

100%

75%

50%

25%

0%

How good an approximation is this?
n Lambertian diffuse reflection

n a good approximation to physical reality

n Phong specular reflection
n a rough approximation to physical reality

n but no consideration of inter-object reflections
n all illumination is directly from the light
n so we cheat!
n assume that all light reflected off all other surfaces can be

amalgamated (joined) into a single constant term: “ambient
illumination”

47

Ambient illumination

n Ambient illumination is not realistic but it makes
objects look better

n Without it, any part of the object that isn’t lit
would be black

48

ambient + diffuse + specular = simple shading

Shading: overall equation
n the overall shading equation is thus

ambient illumination plus
diffuse and specular reflections
from each light source

n the more lights there are in the scene, the longer
this calculation will take

49

q q
a

N
Ri

V

Li

I = Iaka + Iikd (Li •N)+ Iiks (Ri •V)
n

i
∑

i
∑

