VICTORIA
UNIVERSITY
WELLINGTO

Lecture 14-15:
Boids continued

CGRA 354 : Computer Graphics Programming

Instructor: Alex Doronin
Cotton Level 3, Office 330
alex.doronin@vuw.ac.nz

With slides from: Holly Rushmeier, Yale; Steve Marschner, Cornell; Taehyun Rhee, CMIC; Zohar Levi, ECS;

What is Boids?

https://ercang.github.io/boids-js/1-boids-simple/

Emergence

® Boids is a canonical example of an emergent
system, where a set of simple rules exhibits
complex, occasionally even “intelligent” behaviour.

® Emergence is closely related with chaotic
systems and information theory. Other examples of
emergent systems include: Rule 30 Cellular
Automata, Conway’s Game of Life, The Mandelbrot
Set, and Pac-Man Ghosts. However, the best
examples of emergence are in fact everyday
objects, such as birds, ants, fungi, even DNA.

https://en.wikipedia.org/wiki/Rule_30
https://en.wikipedia.org/wiki/Rule_30
https://www.youtube.com/watch?v=gNS426RSoaE
https://www.youtube.com/watch?v=MwjsO6aniig
https://www.youtube.com/watch?v=MwjsO6aniig
https://www.youtube.com/watch?v=ataGotQ7ir8

Reynolds’ rules

= Avoidance

= Alignment

s Cohesion

Avoidance

= Boids avoid
crashes

= Each boid looks at the flock mates in its
neighbourhood and applies a force to push it
away from its neighbours

Alignment

'.". /..,,/' ‘\\\ _\.‘
= Boids want to h \>
fly in the same A
direction |\ |

= Each boid looks at the flock mates in its
neighborhood and applies a force to line it up
with the average direction of its neighbours

Cohesion

\
\'\
= Boids want to
be near their
flock mates |
.-/‘/,
.-"’/

= Each boid looks at the flock mates in its
neighborhood and applies a force to move
towards the average position of its neighbours

Position, Velocity, Acceleration

Simulation is a major subfield of Computer Graphics. For most of you,
this will be your first time programming a 3D simulation.

Boids is not a physics simulation - it’s much simpler. But it uses notions
of position, velocity, and acceleration, which you will need to be familiar
with.

B Position tells us where the Boid is in the scene.

B Velocity tells us how far the position will move in | second.

B Acceleration (aka Force) tells us how much the velocity will change in
| second.

We can update an object in the simulation by adding Velocity to Position,
and adding Acceleration to Velocity. This will simulate | second of real-
world time.

Vector and Scalar Quantities

For implementing spatial or physical algorithms such as Boids, we’re often
interested in quantities in both vector (3 components) and scalar (a single
number) forms. It’s important to have a strong grasp on the terminology.

Displacement is a vector quantity, which measures a difference in position.
In other words, the displacement from A to B is B-A. Distance is a scalar,
and is the magnitude of the displacement.

Velocity is a vector quantity, which measures a difference in position over
time (displacement over time). Speed is a scalar, and is the magnitude of
the velocity.

Direction is a non-specific term, but may be used for the normalized form
of a vector quantity. The direction from A to B is (B-A) / |B-A|; its
normalized displacement.

10

Timestep

Computers are much faster than | frame per second, so we want to
simulate a much shorter time interval than | entire second.

The Timestep tells us how many fractions of a second we want to
simulate. The precise value of this will depend on the speed of your
computer, but we need to account for it when we update our simulation.
We can easily do this by multiplying the Boid’s changes in position and
velocity by it:

position = position + timestep™velocity
velocity = velocity + timestep*acceleration

This is more or less what your Boid::update implementation will look like.

Structure of a Physics Simulation

Physics simulations generally follow a similar structure.

initialize_simulation()

loop {
foreach object in scene: object.calculate_forces()
foreach object in scene: object.apply forces()
render()

}

This code structure is provided for you by the Assignment 3
Framework. You only need to implement parts of each step.

¥ Options

» Camera

» Simulaktion

> Scene

Representing a boid

= A boid has
"
= A position X=]|Yy
_Z-
-vx
= Velocity V=|v

13

Updating a boid’s position
= Add velocity (times the time-step) to position

X . =X+(Vxh)

n

X, =x+(v xh)

n

Vypew =Y+ (v, X)

=z+(v_xh)

Znew

= /1 is the time-step (scalar)

14

15

How do the forces work?

I/‘,. 4\\ //_. A\\\
/ | / N
A -'v/ \\ ,:/' h ‘\\
\\ / \.‘
|; ‘I " l h l‘l
| | [< k !
\ | \ |
| J ! J
N\ V4 \ /
& / A \ /
N\ N
\‘\ \"\

x =Xx+(vxh) = Position is updated by velocity
v, =v+(axh) = Velocity is updated by acceleration

a=f/m s Acceleration is force/mass

Cohesion

= Find the centroid of the neighbours’ positions

Xe = E X, /|NG)|
JEN (i)
= Create a force that goes from your position to

the centroid
f =k (X.-X,)

16

Who are the boids
in your neighbourhood?

= We specify a distance d that a
boid can “see”

= We check all other boids to
see if they are within distance d

N(i)={j:j¢iA‘Xj—Xi‘<d}

Google:“Sesame Street who are the people in your neighbourhood”

17

Alignment

= Find the average of the neighbours’ velocities

Ve S E v, /[NG)|
JEN (i)
= Create a force that adjusts the boid’s velocity to

be closer to the average speed
f =k (v.-v))

18

Avoidance
N 1 { %= x| ‘x A ‘

/
\ J \ J

| |
3 2

1 For each boid in the neighbourhood
create a force that

2 pushes away from the boid,

3 weighted by the inverse of the distance,

4 add all these forces together

19

Feeerereeeerererrereeerrereeerreeeerrereeereread
Normalizing a vector

vector V

= N W H

unit vector u
1 2 3 4

Feeeeereeererererererereeeereererreeeerereeeeeeac
Normalizing a vector

Applying those forces
= Add up the forces and divide by the boid’s mass
a=(f +f +f)/ m ; f,
' f

= Update velocity
V., =V+(@xh)

= Update position

X . =X+(Vxh)

n

22

23

What operations make sense!

m vector = vector + vector ¢ f,
m vector = vector — vector @axhy f
m vector = scalar X vector Vi v
m vector = point — point
Xnew
= point = point + vector /(vxh)
= point = point — vector 3
= point = average of points X = E X, /|NG)

JEN (i)

Must update all boids together

First calculate

forces for all
boids

Then update
velocity and

position for all
boids

24

25

What they don’t usually tell you

= Need to balance forces carefully (experiment)
n Careful choice of &, k, k

X vy Tra

= Mass is an arbitrary number

s If all boids weigh the same, can pretend that m=1

= Need to limit speed and force
s Enforce a maximum speed and a maximum force

s Apply maximum force limit to each force individually

How do | limit a vector?

Limiting a scalar Limiting a vector
if > max i |f|>max
— f
then f,,,, = max thenf =max x —

f]

26

27

What else haven’t you told me!

= You need to stop the boids from flying off into
the distance

= Define an axis-aligned box to keep the boids in
and then:

Force or Bounce or Wrap

I R @ ‘ P Ple ;
Y

Implementing Boids

29

Overview

The original Boids algorithm features 3 basic rules. For Core,
you need to implement these 3 and 2 additional rules which
improve the overall quality of the simulation.

For Completion and Challenge you will need to add additional
rules and extend the existing ones.

1. Avoidance: steer to avoid crowding local flockmates.
2. Alignment: steer towards the average heading of local flockmates.
3. Cohesion: steer to move towards the average position of local flockmates.

4. Confinement: keep the boids within a particular area, so that boids stay on the
screen rather than fly into the distance.

[

Sensible speed: keep its speed between a minimum and a maximum, to emulate a
real birds that cannot fly slower or faster than certain speeds.

Boids Parameters

Every rule has several parameters, which you should make controllable with an ImGui interface.

Most parameters fall into one of two categories:

B Radius: The farthest distance away that another Boid can have to affect this one.
B For example, avoidance will have no effect if all other Boids are outside of the
avoidance radius.
B Weight: How strong the force of this rule is in comparison to the other forces.
B When you calculate the final force on each Boid, use a weighted sum:
total_acceleration = avoidance_force * avoidance_weight
+ cohesion_force * cohesion_weight
+ alignment_force * alignment_weight
B |n previous slides these weights are factored into each force calculation as k.

You'll need to have at both a radius and weight parameter for all of the first 3 rules. That’s a lot
of parameters though, so it’s fine to have a single “neighbourhood radius” that we use for the
first 3 rules.

30

Avoidance

Cohesion

.
-
()
&
S

M

Containment

http://docs.gl/sl4/mod

Sensible Speed

Assighment 3 Framework

Framework Overview

