17 | VICTORIA UNIVERSITY OF

véa WELLINGTON

TE HERENGA WAKA

Lecture 8-10:
Transformations
View, Projections and Instancing

CGRA 354 : Computer Graphics Programming

Instructor: Alex Doronin
Cotton Level 3, Office 330
alex.doronin@vuw.ac.nz

With slides from: Holly Rushmeier, Yale; Steve Marschner, Cornell; Taehyun Rhee, CMIC; Zohar Levi, ECS

Next six lectures

* Lighting continued and linear algebra recap
* Transformations

* Projections

* Instancing

* Textures

* Animation started

Recap: Vectors

Basic operations:

Dot and Cross product:
b-a
|all

0

A, B,
|lax bf| = [[a]| [[b][sin® | 4,|x|B5,]=
A, B,

b= [all [bllcos8 ({:)-(})-oe-oona-o0 b a=[bl|cosd =

z z B

— A
) Ay B

(S
(S

z

NS
tubdm

xT

Recap: Light Source
Models

* Simple mathematical
models:

* Point Light
* Directional Light
* Spot Light
* Two other light properties
* Ambient Light
* Emission

| beamWidth

l

|
I
oy
'T .
| direc

X
—
—

[
full intensity 0.0

Phong Model in OpenGL

* Phong illumination model is combination of
* Ambient i, ,* Diffuse iy + Specular terms iy,
* Developed by Bui Tuong Phong at Univ. Utah 1973
. . . mS l
I=ki +k,imel)+ki(rev)"™

* k, kyk, are material properties having RGB components

N,

r

ambient

specular combined (Phong)

Transformations outline

* Intro to Transformations

* (Classes of Transformations

* Representing Transformations
* Combining Transformations

Common Coordinate systems

Object space
O local to each object

World space

O common to all objects l , J&

Eye space / Cameraspace
O derived from view frustum

Screen space

O indexed according
to hardware attributes

Object space

Coordinate system
convenient for model —eg for A
symmetry

World space

Objects placed in scene #VRML V2.0 utf8
Transform{

translation 5 0 0
/—Z& scale 222
: children[Inline { url "cow.wrl"},]}
Transform{

translation -50 0

scale 1.5 .5.5
children[Inline {url "cow.wrl"},]}

Transform{
translation 0 6 0

scale 51.51.5
children[Inline {url "cow.wrl"},]}

Eye Space

Eye 1s located nside the world, would be
convenient to transform to its coordinate system.

Pixel locations, and a coordinate to
sortdepth

Transformations are used

* Position objects in a scene
Reuse/change the shape of objects
Create multiple copies of objects
Hierarchical modeling

Kinematics

Animations

Projections for virtual cameras/viewing

Stages of Vertex Transformations

p(X.Y;2)

| soomec

M Modeling.
model Transformation

1

Viewin
Myiew i

l 3D Camera Coordinates Viewing Transformations

l

P (X,y)

Moroj

Modeling transformation: scaling FIRST, and THEN the rotation, and THEN the translation.

Classes of Transformations

Intro to Transformations
Classes of Transformations

Rigid Body / Euclidean Transforms
* Similitudes / Similarity Transforms
* Linear
e Affine
* Projective

Representing Transformations
Combining Transformations

Common transformations

Isotropic

[dentity Translation Rotation (Uniform)
Scaling

Can be combined

Are these operations invertible ¢

Yes, except scale =0

Rigid-Body / Euclidean Transforms

Preserves dstances

Preserves angles

A

Rigid / Euclidean

Identity
Translation
Rotation

Similitudes / Similarity Transforms

Preserves angles

A

I

:

S

-+ ===

Similitudes

Rigid / Euclidean

Identity

Translation Isotropic Scaling

Rotation

Linear Transformations

i

>

Scaling Retlection

Shear

Similitudes

Linear
Rigid / Euclidean

Scaling

Identity

Isotropic Scaling Reflection

Rotation

Shear

Linear Transformations

Vectors p, g, scdar a:
L(p +q) =L(p) +L(q)

L(ap) =alL(p)

Similitudes

Linear

Rigid / Euclidean

Scaling

Identity

Translation

Isotropic Scaling Reflection

Rotation

Shear

Affine Transformations

preserves
paralel ines

Affine

Similitudes

Linear

Rigid / Euclidean

Scaling

Identity

Isotropic Scaling Reflection

Rotation

Shear

Projective Transformations

preserveslnes

Projective

Similitudes

Linear

Rigid / Euclidean

Scaling

Identity

Isotropic Scaling Reflection

Rotation
Shear

e | Perspective
Horecom Bl
el (_;‘s:m'., ’
i [
£ | Vi
LMY
& —

Classes of Transformations

* Intro to Transformations

* Classes of Transformations

* Representing Transformations
* Combining Transformations

What is a Transformation?

Maps points (X, y) In one coordinate system fo points (x, y) In
another coordnate system

x'=ax+by+c
y'=dx+ey+f

Translations

2D:
*p'=p+t
* P=(xy)
* t=(xy, Vi)
* P’ = (XX, YY)

3D:

‘p'=p+t .
*p=(x 2) X
*t=(x, s z)

* p' =ty yty, ztz)

Properties of Translations

e Zero identity
7(0,0,0)v=v
e Additive
T(8x,8y,8:) T(tr,ty,tz)v = T(Sx+tx,Sy+1,5:+L)V
* Commutative
T (Sx,8y,82) T (tx, by, 1)V
* [nverse

Tv_1 (tx, ly, tz) V = T(—tx,—ty,—fz) \

T(tx, Iy, tz) T(Sx, Sy, SZ)V

Rotations 2D

N s D sn90 | | a,
y x|’yv X = VCOS¢ sn % 105 0° a, = P9
y=rsing
0 X,y x'=rcos(¢+0)
¢ y'=rsin(@ + 6)

X

cos(@+6) =cos@cosf —sin ¢ sinf

x'=xcos@—ysinf . . .
sin(@ + &) = cos@sin & —sin ¢ cosf

y'=xsinf + ycosf

{ﬂ _ {cos&’ —sin H}H x'=(rcos¢@)cosd —(rsin ¢@)sin @

“sin@ cosd |y| y'=(rcosd)sin@ +(rsing)cosd

R(0) =

Ry(0) =

RA6) =

1

0

0 cosd

0

sin &

[cosf@ 0

0 1

0
—sin &
cosd

sin @

0

—sind 0 cosé

cos@

sin &

0

—sin@ O
cosd O

0 1

How are Transforms Represented?

x'=ax+by+c
y' =dxtey+f

r 3
X a b ||x

y d e ||y f

7 N\ o \ o

Matrices
(please refer to the
Supplement A)

Sum [

Scalar Product Y * [

||

L12
X292

|dentity:

o O =
S = O
_ O O

Recap: Basic operations

|-

Multiplication (commutative property does not hold):

T11 T Y11
T21 + Y21

_ 12 + Y12
T2 + Y22

Yyrii
YTa1

YIi2
Yroo

AB +# BA
1-54+2-7 1-6+2-8
3.54+4-7 3-64+4-8

Homogeneous Coordinates

 Homogeneous coordinates represents

N-dimensional coordinates with N+1 number
[August Ferdinand Mobius]

¢ (X’: y’)Euclidean 9 (x,y,w) homogeneous
* (%Y, W)homogeneous 2 (X/W,y/w), if w=0 it goes to infinity

Why use Homogeneous Coordinates?

* An Euclidean point can be converted into many
different points in homogeneous coordinates
* (1,2,3)=(2,4,6) = (4,8,12) = ... = (1a, 23, 3a)
—(1/3, 2/3) in Euclidean space

* Advantages

* Allows perspective transformation to be expressed as
a matrix equation

* Allows rigid transformations to be combined with
perspective transformation

* Allow translation to be expressed as a matrix equation

Translation Revisited

| x' X Ix
‘p =p+ t | = +
° T(Xt; ytr Zt) y y ty
Z' _Z_ _tz_

* Translation Matrix (4x4)

T(Xl‘, yta Zl‘), y —

O = O O
<t
—_— N =

O O =k O

x| | sex

"= Sy V S(Sx,Sy,Sz) —
z' R4

Uniform scaling iff §x = §y = -

ss 0 0 0]x] x| [1/s:
0 s 00|y yi | O
0 0 s 0fz z| | 0
_O 0 O 1__1_ _1_ i 0

S

ss 0 00

0 s» 00

0 0 s 0

0 0 0 1]
0O 0 O
/sy 0 0
0 1/s:0
0 0 1

-

Rotations Revisited

About x axis:

About y axis:

About z axis:

R(6)

Ry(0)

R-(6)

1 0
0 cosé

0 sind

0 O

cosé
0

—sin 6
0

cosd
sin &
0
0

o O = O

—sin @

cosd

0
0

0

—sin @

cos @
0

sin @

cosd

S = O O

_—o O O _o O O

_— o O O

Rotation: arbitrary axis

Rotate(k, 0)

Y 4
O ~
About (kx Ky, kz), aunit /.
vector on an abitrary axis

(Rodrigues Formula)

>
X
V4

(¥ (kd(l-c)+c Ihfl-c)-kss kdef(1-c)+hs 0)x)
y'| bk l-c)*hks kki(l-c)+c kk(l-c)-ks O ||y
2 | kkl-c)-ks kki(l-c)-ks kk(1-c)+c 0| z
o 0 0 1

where c=cos 0 & s = sin 0

* The effect looks like “pushing” an objectin ¢ ¢
a direction parallel to a coordinate axis (2D)]
or plane) ’ 7/ /

* How far to push is determined by a sharing factor

1 [1ao0o]x , 1 [100]x ,
' XZ)C-i—Cly , X =X
y|=(010|y| |, y|=|b10|y| |)

— — _|_
1] loor|1]| 77 1] Joor|r| YT

— —
SHx = 2 SHy = 2

x shear with shearing factor a y shear with shearing factor b

Properties of Affine transform

* A composition of affine transformation is
an affine transformation

* Given any two triangles, there exists
an affine transformation mapping one
to the other

X Moy My My, My
Y _ | o Ty Ty Ty
z' Myy My My, My,
1 [my my my, my,

— N e =

Composition of Transformations

Order Matters

R(45)T(1,1) # T(1,1)R(45)

o o D

R(45) T(1,1) T(1,1) R(45)

Rotation at a point

* Rotate 45 at the center of Object (1,1) ?

Rot(45) at (1,1)

T4,
—

Display multiple instances

* transformations allow you to define an object at one
location and then place multiple instances in your scene

OpenGL GLM

G

* OpenGL Mathematics (GLM) is a header only C++ mathematics library for
graphics software based on the GLSL specifications.

* GLM provides classes and functions designed and implemented with the same
naming conventions and functionalities than GLSL so that anyone who knows
GLSL, can use GLM as well in C++.

e This project isn't limited to GLSL features. An extension system, based on the
GLSL extension conventions, provides extended capabilities: matrix
transformations, quaternions, data packing, random numbers, noise, etc...

GLM: Translation Revisited

T(Xt,yt,Zt), d —

o = O O
=
— N e R

o o = O

vec(
::mat4 trans = glm::

trans = glm::translate(trans,
vec = trans * vec;
<< vec.X << vec.y << vec.z <<

trans_X =
(trans,

trans_Y =
(trans,

trans_Z =

(trans,

GLM: Rotations Revisited

R(6)

Ry(0)

R(0)

1 0
0 cosé

0 sind

0 O

cos &
0

—sin @
0

cosé

sin @
0
0

o o = O

—sin @

cos @

0
0

0

—sin @

cos
0

sin @

cos @

o = O O

ss 0 0 0]
0 s 00
0 0 s 0
: 00 0 1

Sxx
=Sy S(Sx, Sy, SZ) —

Z Sz Z

glm: :mat4 scale = glm::mat4() I

scale = glm::scale(scale, glm::vec3(

Composition of Transformations

T(1,1)

Order Matters
R(45)T(1,1) # T(1,1)R(45)

R(45) T(1,1)

T(1,1) R(45)

myModelMatrix = myTranslationMatrix * myRotationMatrix * myScaleMatrix;
myTransformedVector = myModelMatrix * myOriginalVector;

<< myTransformedVector.x << myTransformedVector.y << myTransformedVector.z <<

Generally: scaling FIRST, and THEN the rotation, and THEN the translation.

In the Shaders

In basic model.hpp :

In default_vert.glsl:

draw(s &view, s proj) {

.
I

// cacluate the modelview transform
modelview = view * -

// load shader and variables

glUseProgram(ik
glUniformMatrix4fv(glGetUniformLocation(' Do il - (proj));
glUniformMatrix4fv(glGetUniformLocation(-), 1, f (modelview));
glUniform3fv(glGetUniformLocation(,), 1, ()5

// draw the mesh
0);

main() {

// transform vertex data to viewspace

v_out.position = (uModelViewMatrix (aPosition, 1)).xyz;
v_out.normal = ((uModelViewMatrix s (aNormal, ©)).xyz);

v_out.textureCoord = aTexCoord;

// set the screenspace position (needed for converting to fragment data)
= uProjectionMatrix * uModelViewMatrix s (aPosition, 1);

Object Coordinates

* An origin and basis define a frame of reference

* Object is defined in its local coordinates to easy
control. Then, it is transferred to the world
coordinates using model matrix M, 4.

N4

Eyve(camera) coordinates

* Objects are transformed from object space to eye space using a
“model” matrix
* Combination of Model matrix M_,, 4. and View matrix M.,
* M, .4 : from object coordinates to world coordinates
* M, : from world coordinates to eye coordinates

* In eye coordinates, camera is located at (0,0,0)
facing —z axis

Camera direction \ /
— . i
- View transform ® U View frustum
O) EOX
> X . X
‘ N , ‘
Camera) J [Book: Real Time Rendering]

., . S
position z z

Move the mountains (world) or move the camera?

* Moving camera is reverse movement of objects

* Rotate/Move Camera R (theta) is same as rotate
object R (-theta)

Image credit: http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

View Transformation

* The basis are all normalized and orthogonal

* We can make a world coordinates transformation matrix which can
move camera (position and orientation)

in world coordinates

* E.g. define a function LookAt(e,, e, e,, c,, C,, C,, Up,, Up,, up,), where

b; =-(c—e)
b, =upxb;
b, =b,xb,
_blx b2x b3x ex]
0c _ bly b2y b3y €, Ow
blz bZz b3z ez
000 1 |

Parameters
Position of the camera
Position where the camera is looking at
Normalized up vector, how the camera is oriented. Typically (0, 0, 1)

https://glm.g-truc.net/0.9.5/api/a00176.html

https://glm.g-truc.net/0.9.5/api/a00176.html

In the Code/Shaders

Application.cpp :

)); // TODO replace view matrix with the camera transform

// cacluate the modelview transform

modelview = view *

GLM'’s LookAt:

glm::mat4 CameraMatrix = glm::lookAt(
cameraPosition, // the position of your camera, in
cameraTarget, here you want to look at, in \

upVector // glm::vec3(0,1,0), but (0,-1,0) would make you looking upside-down

)i

(unsigned i = 0; 1 < nModels; i++)

DoSomePreparations(); // bind VAO, bind textures, set uniforms etc.
glDrawArrays(GL_TRIANGLES, @, amount_of_vertices);

= , -
—— b - —
el

* transformations allow you to
define an object at one location
and then place multiple
instances in your scene

Instancing hint: Code/GLSL

glDrawArraysinstanced Drawing

The function glDrawArraysInstanced draws multiple instances of the same object which
allows for much greater efficiency than drawing these objects individually using calls like
glDrawArrays. Via GLSL's built in g1 _InstanceID or instanced arraysit is then possible to
manipulate the vertices per instance.

The parameters of glDrawArraysInstanced (GLenum mode, GLint first, GLsizei
count, GLsizei primcount) are as follows:

¢ mode: specifies the kind of primitive to render. Can take the following values: GL_ POINTS,
GL LINE STRIP,GL LINE LOOP, GL LINES, GL TRIANGLE STRIP,
GL TRIANGLE FAN, GL TRIANGLES, GL QUAD STRIP,GL QUADS, and GL POLYGON.
e first: specifies the starting index in the enabled arrays.
e count: specifies the number of vertices required to render a single instance.
® primcount: specifies the number of instances to render.

Example usage

glBindVertexArray(quadVAO) ;

glDrawArraysInstanced(GL_TRIANGLES, 0, 6, 100);
glBindVertexArray(0);

Credit: https://learnopengl.com/Advanced-OpenGL/Instancing

Instancing: Code/GLSL

In the program:

glm:: translations[
index =
offset

glm:: translation;

translation.x = ()x / + offset;
translation.y = ()y / + offset;
translations[index++] = translation;

In the shader:
offsets[g

main()

offset = offsetsl I’;
= (aPos + offset, .);
fColor = aColor;

Credit: https://learnopengl.com/Advanced-OpenGL/Instancing

* In eye coordinates, the objects are still
in 3D space

* The 3D scene in eye coordinates needs to be
transferred to the 2D image on screen

* The projection matrix transfer objects in eye
coordinates into clip coordinates.

* Then, perspective division (dividing with w component)
of the clip coordinates
transfer them to the normalized device
coordinates (NDC)

Projection Matrix

* The projection matrix defines a view frustum
determining objects to be drawn or clipped out
* Frustum culling (clipping) is performed in the clip
coordinates, before dividing points by w.
* Perspective Projection, Orthographic Projection

(-1,1, 1)
2) — — () 1.1, 1)
r—— =5 A e 1,1,1)
- ———,:;T _—\\ +Y .-i:-»- i
= | ‘\\\ A 7 51 o) (s = n— 7 l". ‘“’-\\\ Y
—_— ‘—c“\ p— ‘I \\» /
/ 4 \ ‘l +Y \ o= _-/_‘/ / l\y 4 +Z /
(htnl / \ A |\ (r4:n) &])
I\ 2 ,// / l. \ lll 2 /
\ Y \ / —— /
. (b M \('- 4 n) \ [+X /(1.-1.1) A/k: \ [+x /(1.-1.1)
+Y - ——— X / N
Ly N— -1.-1:-1) l +Z) 1 1 [/
(r, b, n) J /
x (r, b, n) I/
+X S / J
A J (1.-1.-1)
(1,-1,-1)
[Image from Song Ho Ahn] Orthographic Projection

Perspective Projection

Perspective Projection

* 3D objects in eye coordinates are
mapped into a canonical view volume

* The view volume is specified by

[left, right, bottom, top, near, far]
 The view volume is transformed into a canonical view

volume which is a cube from (-1,-1,-1) to (1,1,1)

e X:[l,r1=2>[-1,1]

* Y:[b,t] 2 [-1, 1] (1.1, 1)
- e [1,1, 1)

e Z:[n, f1>[-1,1] o - —

- R e /

it n T‘~ /__ ‘I-" 7 ‘.""
(0, b, M\ W‘" L) ,‘ ,. [+X ‘,,..-"‘(1 -1,1)

— (-1, -1, 1) [/

+Y
<[
(r, b, n)
+X ~ I/
[Image from Song Ho Ahn] ~J/
(1,-1,-1)

Perspective Projection in OpenGL

e The perspective Projection matrix of a frustum [|
,rb,t,n,f]is:

(Lr. Lt f)

2n 0 r+1 0 .
r—1 1
2n t+b

’ 0
t_b t_b (/.l.u)ll\(/‘./.,,‘{)
f+n —-2fn ‘ o
L N (I.b.n ,
L O O - 1 O | (r.b.n) (,%l %h. ,

[Image from Song Ho Ahn]

// calculate the projection and view matrix

mat4 proj = perspective(, (width) / height,

Orthographic Projection

e Constructing a projection matrix for orthographic projection
is much simpler

* Linear mapping from (x,, Yo Ze) to (X,, Y, Z,)

Orthographic Projection Matrix

* The Orthographic Projection matrix of

[Lr,b,t,n,f]is

2
r—I1
o 2
t—b
0 0 — 2
f—n
0 0 0

 Since W-component is not necessary, the 4t row of

the matrix is remains as (0,0,0,1)

- Try it at Home !

); // In world coordinates

Normalized Device Coordinates (NDC)

(-1, 1, 1)

(1,1, 1)
1, 1, -1) -

(1,-1,1)

(1,-1,-1) 14 %
& :

(-11 _1/ -1)

Y
X

7

Left hand Right hand

OpenGL: right-handed; others (e.g. DirectX: left-handed)

Normalized Device Coordinates (NDC)

* 3D Homogeneous coordinates

L X
can be represented as Y
~ /
w
where X Y Z
X =— . y = —, zZ = —
w w w

* Normalized device coordinates (NDC) is generated by
perspective division with w

Clipping

* Canonical view volume clips primitives
* Primitives inside of the view volume are passed

to the next stage

* Primitives outside of the view volume are clipped
* Clipping may generate new vertices

unit-cube

2

/

Y
/Wl»

Clipping

new ﬁertices

/.' :‘/

> -./‘

- -

new vertex -
[Book: Real Time Rendering]

/

,'

/

e
r

> X

Viewport Transform

* Clipped primitives of NDC (x,,, y,,, z,) are
transferred to screen coordinates (x,, y.)

e Screen coordinates with depth value are window
coordinates (X, Y Zy)

A
unit=cube

L‘\E‘ : ’ Screen mapping

[Book: Real Time Rendering]

Viewport Transform

* (x,, Yn) in NDC are [-1 1], the value is translated and scaled
to the pixel position of screen (x., y;)

* Screen coordinates (x., y,) represent the pixel
position of a fragment

* 2, in NDCis [-1 1], the value is translated and
scaled on [0 1] for z,

* z,,is the depth value of the pixel position (x;, y.) used for

depth test using z-buffering (11 1)
o~ (1,1, 1)
(-1, 1, -1)

(1I _11 1)
(-1,-1,-1)

(1,-1,-1)

-
RS,
+

(O

N
-

Q
+—

V)]

qV)
a'el

e Convert primitives into fragment

* Interpolates triangle vertices into fragments
* Fragments are mapped into frame buffer

Hidden Surface Removal

* Eliminate parts that are occluded by others
* Depth buffer (z-buffer) contains the nearest depth values of each

fragment

* If (current depth < depth buffer),
update frame buffer and depth buffer
using the current values (color/depth)

glEnable(GL_DEPTH_TEST);

while (1)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

draw_3d_object_A();
draw_3d_object_B();
}

.

d
clippe

W0000000000000“0“0“0“0“0“

0000“0000000“0“0“0“0“0”0

5%0%0%0%0%0%0%0%0%0%0 —
p.
L ZeZoZozegele2e2020208

.
.

-
O
©
S
=
-
(©
| -
_I
>
Q
ju
Q
=
IS
d
Qo
©
v

Viewing Transformation

object space camera space screen space

R\

canonical

world space .
view volume

Supplement A:
Matrices overview

Overview

* Matrices will allow us to conveniently represent
and apply transformations to vectors, such as
translation, scaling and rotation

 Similarly to what we did for vectors, we will briefly
overview their basic operations

Basic operations

* A matrix is an array of numeric elements
L11 212
L21 X22

T11 T12 Y11 Yi2| _ |[T11 T Y11 T12 T Y12
Sum + —
T21 X292 Y21 Y22 T21 + Y21 T22 + Y22

I11 $12] _ [yxn 951312]

Scalar Product Y *
L21 L22 Yyra1 YI22

* Think of a determinant as an operation between
vectors.
labc]|

ab

a

Area of the parallelogram Volume of the parallelepiped
(positive since abc is a right-handed basis)

Transpose

* The transpose of a matrix is a new matrix whose
entries are reflected over the diagonal

O O I PO I | I
2 3 4| |2 4 -
5 6 2 4 6
. The transpose of a product is the product of the transposed, in reverse
order

(AB)! =BTA?

Matrix multiplication

* The entry i,j is given by
multiplying the entries on
the i-th row of A with the
entries of the j-th column
of B and summing up the
results

* It is NOT commutative (in
general):

AB # BA

O| T
N =
N N

19 22

1 2] [5 6] _[1-5+2:7 1-6+2-8
3 4| |7 8 [3-5+4-7 3-6+4-8

43 50

| —r1—| || | [N I
Y| = | T2—| [X Y| = [C1 C2 C3| (T2
Il [rs—] L RN N N Y
Yi =Ti X Y =21C1 + L2C2 + L3C3

Dot product on each row Weighted sum of the columns

1 2 3 (7 8] 58

4 5 6 X 9 10| =

111 12

https://www.mathsisfun.com/algebra/matrix-multiplying.html

Inverse matrix

e The inverse of a matrix A is the matrix A—! such that

AAT1 =1
1 0 0
where | is the identity matrix I=10 1 0
0 0 1
. The inverse of a product is the product of the inverse in opposite order:

(AB)"' =B 'A!

Inverse matrix

Need it because, there is no concept of dividing by a matrix: can multiply by an
inverse, to achieves the same thing.

28] = = (07

s 77°1 1 6 of
2 6 — 4x6-7x2 | -2 4
— 116 -7
- 10| -2 4
0.6 -0.7
-0.2 0.4
https://www.mathsisfun.com/algebra/matrix-inverse.html

https://www.wikihow.com/Find-the-Inverse-of-a-3x3-Matrix

Diagonal Matrices

* They are zero everywhere except the diagonal:

a 0 O
D=1|0 b 0
0 0 ¢
. Useful properties:

Orthogonal Matrices

* An orthogonal matrix is a matrix where
e each column is a vector of length 1
e each column is orthogonal to all the others
e orthonormal vectors!

* A useful property of orthogonal matrices that their
inverse corresponds to their transpose:

RIQ=QQ" =1
QT = Q!

