17 | VICTORIA UNIVERSITY OF

véa WELLINGTON

TE HERENGA WAKA

Tutorial:

Programming tools/IDEs

CGRA 354 : Computer Graphics Programming

Instructor: Dr Alex Doronin
Cotton Level 3, Office 330
alex.doronin@vuw.ac.nz

With slides from: Holly Rushmeier (Yale), Marc Gluyas (VUW), Abigail Clennell (VUW)

Next five lectures
* Computer Graphics and C++ recap

* C++ Recap continued and introduction to OpenGL
programming

* C++/0OpenGL programming continued:
* 3D Geometry and GUI
e Shading and color
* Introduction to Lighting

Subsequently:
e 3D Transformations, etc.

Recap: Applications: Discovery, Design, Communication,

Expression

Movies

Games
Computer-aided design
Scientific visualization
Medical imaging
Training
Education ;
E-commerce EX
Graphical User Interfaces

Areas in Computer Graphics

* Imaging = representing 2D images

* Modeling = representing 2D/3D objects

* Rendering = 2D images from 2D/3D models
* Animation = simulating changes over time

Curves: splines
= Surfaces: meshes,
aaaaaaaaaaaaaa splines, subdivision :
. dewesoscer 2 FENl 890909090 . 0 Wotion capture
mmmmmmm
rrrrrrrrrrr

Image representation Representations of % \
= Sampling
= Quantization and aliasing geometry %
N
*K:'w =
AL {

Dynamics

ooooooooooooooooooo

Behaviors

Image representation
= Sampling
= Quantization and aliasing

Raster graphics
= Display devices
= Color models

Image processing
= Filtering

= Warping

= Morphing

= Compositing

Modeling

Representations of
geometry

= Curves: splines

» Surfaces: meshes,
splines, subdivision

= Solids: voxels, CSG BSP

Procedural modeling
= Sweeps
* Fractals
= Grammars

3D scanning

3D rendering pipeline _ vf |
Modeling transformations j i |
= Viewing transformations : —

= Hidden surface removal

= |llumination, shading and
textures , =

= Scan conversion, clipping
= Hierarchical scene
graphics

= OpenGL/WebGL

Global lllumination
= Ray/Path tracing

Key framing
= Kinematics
= Articulated figures

Motion capture
e markers
e markerless

Dynamics
= Physically-based
simulations

= Particle systems
= Collision detection

Behaviors
= Planning, learning,

etc.

We are using C++ and OpenGL

.h

.Cpp

N
/7
N

/7

Compiler

Object File

Compiler

Linker

\'V'4

Program structure:

e Headers: *.h

e Source files: *.cpp

e Creates a binary file

* Program entry point: main()

Object File

Open Graphics Library:

* API for GPU-accelerated 2D / 3D rendering
e Cross-platform (Windows, OS X, Linux, iOS,

penGL &9

Android, ...)

Executable

Today:

* Overview of Integrated development
environments (IDEs) on Windows, Mac,
Linux and Cmake tools

CMake

ss-platform Make

Building a C++ program?

* You write an application (source code) and need to:
 Compile the source
* Link to other libraries
 Distribute your application

What is Cmake?

 Think of it as a unified Make

* CMake is used to control the software compilation
process using simple platform and compiler
independent configuration files

* CMake generates native makefiles and workspaces
that can be used in the compiler environment of your
choice: Visual C++, Kdevelop3, Eclipse, XCode,
makefiles (Unix, NMake, Borland, Watcom, MinGW,
MSYS, Cygwin), Code::Blocks etc

* Projects are described in CMakelLists.txt files (usually
one per subdir)

https://cmake.org/

Build flow

CMakeLists.txt

.vcproj / Makefile / etc

Native building tools (Visual Studio,
Eclipse, KDevelop, etc)

Native linking tools (lib.exe,
i link.exe, Id, etc)

exe/ dll/.ib/.a/.so/.dylib

Tools the developer is already familiar with

obj /.0

Hello CMake

* PROJECT(helloworld)
e SET(hello_SRCS hello.cpp)
« ADD EXECUTABLE(hello ${hello_SRCS})

* FIND_PACKAGE(Qt4 REQUIRED)

* Cmake includes finders (FindXXXX.cmake) for many
software packages

* If using a non-CMake FindXXXX.cmake, tell Cmake
where to find it by setting the CMAKE_MODULE_PATH
variable

* Think of FIND PACKAGE as an #include

Integrated
Development

Environment
(IDE)

® |ntegrated Development
Environment — allows the
automation of many of the
common programming tasks in
one environment

Writing the code

Checking for Syntax
(Language) errors
Compiling and
Interpreting(Transferring to
computer language)
Debugging (Fixing Run-time
or Logic Errors)

Running the Application

Common
IDEs: Visual

Studio/Xcod
e

Platforms that allows the

development and deployment

of desktop, mobile and web

applications

Allows user choice of many

languages

= May program in One of
them

= May create different parts
of application in different
languages

C++
C# (C Sharp)
Java
Etc.

User creates a new project in Visual
Studio/Xcode

e A solution and a folder are created at the same
time with the same name as the project

B ase d on e The project belongs to the solution
* Multiple projects can be included in a solution

PrOJ eCt Solution

a n d e Contains several folders that define an
application’s structure

S O | u t I O n e Solution files have a file suffix of e.g. .sIn
CO NCe pts Project: contains files for a part of the

solution

e Project file is used to create an executable
application

e A project file has a suffix

e Every project has a type (Console, Windows, etc.)

Creating and opening solutions: README.md

Windows

Visual Studio
This project requires at least Visual Studio 2015. You can get the latest, [Visual Studio Community 2017 , for free from Microsoft.
| Product | XX
Vv Staco 2015 14
| Visual Studio 2017 | 15 |

Run the command for Visual Studio with the appropriate version number (XX).

Or if you are building for 64-bit systems.

After opening the solution () you will need to set some additional variables before running.
-- Select from the configuration drop-down
-- Set (¢}

-- Set to whatever is required by your program

.'.7" Quick Launch (Ctrl+Q) P c

soleApplication1 - Microsoft Visual Studio

View Project Build Debug Team Nsight Tools Test Analyze Window Help Alexander D
Bralw™ Debug ~ x86 ~ P Local Windows Debugger ~ 51 _ g =% N -

<plorer v I X ConsoleApplicationl.cpp H X ¥ Properties

N\l - @ o-Sa@ © " [%] ConsoleApplication1 v (Global Scope) v v

ution Explorer (Ctrl+;) P~ EIL‘ ConsoleApplicationl.cpp : This file contains the 'main' function. Program execution begin f sy 8

ion 'ConsoleApplication1’ (1 project)

onsoleApplication1 Bl#include “"pch.h"

I References L#lnclude <iostream>

| External Dependencies
| Header Files
| Resource Files

BEint maln

{
std::cout << "Hello World!\n";

] Source Files
*+ ConsoleApplication1.cpp
*+ pch.cpp

}

(i)
]

)

Visual studio

Team Explorer 100% ~ 4

o0) [] | base) ¥ My Mac

= Q AN o
v [A CGRA_PROJECT base

v Nl ALL_BUILD
» Nl CMake Rules
B CMakeLists.txt
v [l uninstall
» [l CMake Rules
B CMakelLists.txt
v Nl GLFW3
> Nl gifw
v Ml GLEW
> [l glew
v Ml stb
» Wl Source Files
. CMakelLists.txt
v Nl imgui
» [l Header Files
» [Nl Source Files
B CMakelLists.txt
v Ml glm_dummy
» Ml Header Files
» [Nl Core Files
» [l GTC Files
» [l GTX Files
» [SIMD Files
B CMakeLists.txt
v [l CGRA
v [l base
\d. B
»> Nl cgra

CGRA_PROJECT_base | Build base: Succeeded | 8/07/19 at 10:35 AM

B CGRA_PROJECT base) il CGRA) [l base) [l src) [main.cpp) No Selection
(); // unrecoverable error

// make the window's context current.
// if we have multiple windows we will need to switch contexts
text - (window) ;

// initialize GLEW

A 0o 2

// must be done after making a GL context current (glfwMakeContextCurrent in this case)
= GL_TRUE; // required for full GLEW functionality for OpenGL 3.0+

err = gl Lt();
(GLEW_OK != err) { // problem: glewInit failed, something is seriously wrong.
<< << (err) << :
(); // unrecoverable error
}
// print out our OpenGL versions
<< << (GL_VERSION) << g
<< << (GLEW_VERSION) << g
133 << glfwMajor << << glfwMinor << << glfwRevision << :

// enable GL_ARB_debug_output if available (not necessary, just helpful)

(() o

// this allows the error location to be determined from a stacktrace

(GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB) ;
// setup up the callback

glDebugMessageCallbackARB(7)i
glDebugMessageControlARB(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, @,
<< << 9
}
{
<< “3
}

// initialize ImGui

I EHo @

Identity and Type

Name main.cpp

Type | C++ Sour

Location | Relative t
src/main.c

Full Path /Users/ale
Teaching/(
Josh/base
main.cpp

On Demand Resource Tags

Target Membership
©® ALL_BUILD
© ZERO_CHECK
@© install
© uninstall
1 glfw
1 glew
1 stb
1 imgui
"] gim_dummy

v []base
© res

Text Settings

Text Encoding | Unicode |

Line Endings | No Explic

Indent Using | Spaces

Widths

CMakelLists.txt 5
R i (lcgra:: RE (window)) { Tab
application.cpp << << 7 v Wrap i
" rap lir
application.hpp (); // unrecoverable error
main.cpp }

W-' o) |

Xcode

+ |® Filter O Auto ¢ S) All Output & ® iy

WO~ & O~ olp@ <
f arch Solution Explorer (Ctrl+; Jo

] Solution 'ConsoleApplication1' (1 project)

4 [%| ConsoleApplication1

D =B References ¥ / .
D NE External Dependencies P - _—
b ‘

=S

®) Header Files
). ™l Resource Files y:
A Sl Source Files r

Y ConsoleApplication1.cpp
e - Nl Header Files

Ml Source Files
. CMakelLists.txt
Nl glm_dummy

Project files » N Header Files
» N Core Files

Nl GTC Files
RN GTX Files
| SIMD Files

EMakeLists.txt

s

N s

teLists.txt

1

> W base) 7 MyMac

Q AN © = o B H

Building projects
i Solution 'ConsoleApplication1’ (1 project)
4 [%| ConsoleAppl .
u-B Reference e
External D Rebuild
™8 Header Fil Clean

Build

®8 Resource | View
Lal Source Fili
P *++ Consol

Analyze

Project Only

*+ pch.cp

Details

First Steps:

1. Install required tooling (if working on non-ECS machine)

o C++ Compiler / IDE
o Update OpenGL 3.30 drivers (if needed, but probably already installed)

o CMake
Download and compile the CGRA framework

Create your source files (src/objfile.h, src/objfile.cpp) and add
them to src/CMakelLists. txt
4. Implement your class with hard-coded placeholder geometry (eg: a

tetrahedron) before attempting 1oadOb j
o Usesrc/triangle.hpp as example code for setup(), draw(), and destroy()

W N

CGRA Framework Overview

CGRA Framework
Key Components

README . md: Very detailed and incredibly
helpful!

build: Where you will generate your platform-
specific project files with CMake. Delete the
contents of this when you submit your
assignment.

work: Contains all the actual content.
work/src: Put all your source files here.
work/res: Contains a teapot asset and
shader code.

src/CMakelLists. txt: Tells CMake what
files to include in the build; update this every
time you add create a new source file or
folder. Be careful not to confuse this with the
CMakelLists.txt in the root folder.
src/application.cpp: This is the main
class you'll be modifying to instantiate and
call out to your .obj parser.
src/triangle.hpp: Provides a very simple
geometry implementation. You can use this as
a base for your build(), draw(), and
destroy () methods, but note that it may
structure its data in a different way to you.

v A1
> build
v work
> cmake
> ext
> res
vV SIC
> cgra
application.cpp
application.hpp
CMakelLists.txt
main.cpp
opengl.hpp
triangle.hpp
CMakelists.txt
README.md
.gitignore

= imgui.ini

Initial_setup.png
README.md

Adding Files and
Folders to CMake

Every folder which contains C++ code
contains a CMakelLists. txt file, which
you need to update every time you add a
new file or folder.

For Assignment 1, you only need to add
code towork/src, and so you only need
to work with
work/src/CMakelLists. txt.

When creating a new file, find the
SET(sources ...) section of the file,
and add your filename.

When creating a new folder, add an
add_subdirectories() statement
with the name of your folder to the

CMakelLists.txt inits parent directory.

Then, create a CMakelLists. txt inyour
folder. You can use the code on the right
as a template.

HABHHHRAHHRERHRBAHFF R AR RYRFAAR SRR R I FHRSH AR S HRR S HA RS HRRAAH

Source Files
#H# S HH A S HH A HH S H S SR R AR AR AR SRS

----TODO----------————————-
list your source files here
B #
SET(sources

"application.hpp’
"application.cpp’

"opengl.hpp"
"main.cpp"

“triangle.hpp"”

"CMakelLists.txt"

)

----TODO----------=——~——oe-
list your subdirectories here
B o #

add_subdirectory(cgra)

Building with CMake

We use CMake to allow cross-platform
compilation. CMake uses files called
CMakeLists.txt in multiple folders to
describe how to compile the project.

CMake does not compile the program. Instead,
it generates native build configurations
(makefiles, project/solution files, etc.) for your
computer, which you can then use with the
compiler you have installed.

Several recent versions of IDEs (Visual Studio,
CLion) have built-in support for CMake projects,
so you don't have to manually re-run CMake
when you add a new file to the project.

There is a platform-specific way for each platform (covered
in readme.md), but in general the way it works is:

Navigate your terminal to . /build
Run cmake with the path . . /work

o This will generate the files in . /build
Run your normal compiler/build system
cd .. toreturnto the root directory, then
call. /build/base to run your project

CLion

1. Cross-platform Windows/Mac/Linux, available on ECS computers

2. Based on IntelliJ - familiar

3. CMake integration, don't need to manually generate projects, can auto-add
files to CMakelLists.txt

4. Free for university students

CLion setup

Sign up with your uni email https://www.jetbrains.com/shop/eform/students

Compiler configuration:

Windows https://www.jetbrains.com/hel

Open the work/ folder of

the framework download, ‘ ‘ ‘

and make sure the "base" CMakelLists txt [' gitignore 1:_1.:1 application.hpp
target is selected

O G ~ &

This is the one with your
code in it

https://www.jetbrains.com/shop/eform/students
https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-windows.html
https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-macos.html

CMake in Visual Studio

CMake in VS was introduced in VS17 but support has changed in new versions
https://docs.microsoft.com/en-us/cpp/build/cmake-projects-in-visual-studio?view=msvc-170

1. Install CMake tools when installing Visual Studio What would you like to do?

Open recent Get started
2. Open the work/ folder of the framework with the “Open a local s A T
. Ge:::dzvfmn; an online repository like GitHub or
folder option” b o L _
pS_. lE)per: alerOJle;ftdor solutloln”
3 E - - . N —— " 1/}
xtensions Window Help arc work

E”’ Open a local folder

Navigate and edit code within any folder

x64-Debug - P base.exe (bin\base.exe) ~

ﬁﬁ Create a new project
Choose a project template with code scaffolding
et started

pp & X CMake Overview Pages
) - x64-C ~ (Global Scope)

w
o
m
=
o
m
al
=)

https://docs.microsoft.com/en-us/cpp/build/cmake-projects-in-visual-studio?view=msvc-170

Building for XCode (MacOS

1. Open a Terminal window and navigate to the “. . . /base/build”
directory. Use “cd” to change directory.

2. Call the command “cmake -G "XCode" ../work”. This will build your
framework so that it can be opened in XCode.

3. Change the scheme to “base”

r
eoe [[CGRA_PROJECT... = My Mac

B2 < C* main.cpp

CGRA_PROJECT_base) & CGRA) & base) & src) C" main.cpp) [EJ main()

Useful links

https://docs.microsoft.com/en-us/visualstudio/ide/getting-
started-with-cpp-in-visual-studio?view=vs-2019

https://www.geeksforgeeks.org/introduction-to-visual-studio/

https://codewithchris.com/xcode-tutorial/

