
Tutorial:

Programming tools/IDEs
CGRA 354 : Computer Graphics Programming

Instructor: Dr Alex Doronin
Cotton Level 3, Office 330
alex.doronin@vuw.ac.nz

With slides from: Holly Rushmeier (Yale), Marc Gluyas (VUW), Abigail Clennell (VUW)

Next five lectures
• Computer Graphics and C++ recap
• C++ Recap continued and introduction to OpenGL

programming
• C++/OpenGL programming continued:
• 3D Geometry and GUI
• Shading and color
• Introduction to Lighting

Subsequently:
• 3D Transformations, etc.

Recap: Applications: Discovery, Design, Communication,
Expression

� Movies
� Games
� Computer-aided design
� Scientific visualization
� Medical imaging
� Training
� Education
� E-commerce
� Graphical User Interfaces

Areas in Computer Graphics

• Imaging = representing 2D images
• Modeling = representing 2D/3D objects
• Rendering = 2D images from 2D/3D models
• Animation = simulating changes over time

Imaging

Modeling

Rendering

Animation

We are using C++ and OpenGL

.h

.cpp

Object File

.h

.cpp

Object File

Compiler

Compiler

Linker Executable

Program structure:
• Headers: *.h
• Source files: *.cpp
• Creates a binary file
• Program entry point: main()

Open Graphics Library:

• API for GPU-accelerated 2D / 3D rendering

• Cross-platform (Windows, OS X, Linux, iOS,
Android, ...)

Today:
•Overview of Integrated development

environments (IDEs) on Windows, Mac,
Linux and Cmake tools

Building a C++ program?

• You write an application (source code) and need to:
• Compile the source
• Link to other libraries
• Distribute your application

What is Cmake?

• Think of it as a unified Make
• CMake is used to control the software compilation

process using simple platform and compiler
independent configuration files
• CMake generates native makefiles and workspaces

that can be used in the compiler environment of your
choice: Visual C++, Kdevelop3, Eclipse, XCode,
makefiles (Unix, NMake, Borland, Watcom, MinGW,
MSYS, Cygwin), Code::Blocks etc
• Projects are described in CMakeLists.txt files (usually

one per subdir)

https://cmake.org/

Build flow

Hello CMake

• PROJECT(helloworld)
• SET(hello_SRCS hello.cpp)
• ADD_EXECUTABLE(hello ${hello_SRCS})

Dependencies

• FIND_PACKAGE(Qt4 REQUIRED)
• Cmake includes finders (FindXXXX.cmake) for many

software packages
• If using a non-CMake FindXXXX.cmake, tell Cmake

where to find it by setting the CMAKE_MODULE_PATH
variable
• Think of FIND_PACKAGE as an #include

Integrated
Development
Environment
(IDE)

¡ Integrated Development
Environment – allows the
automation of many of the
common programming tasks in
one environment
§ Writing the code
§ Checking for Syntax

(Language) errors
§ Compiling and

Interpreting(Transferring to
computer language)

§ Debugging (Fixing Run-time
or Logic Errors)

§ Running the Application

Common
IDEs: Visual
Studio/Xcod
e

¡ Platforms that allows the
development and deployment
of desktop, mobile and web
applications

¡ Allows user choice of many
languages
§ May program in One of

them
§ May create different parts

of application in different
languages

C++
C# (C Sharp)
Java
Etc.

Based on
Project
and
Solution
Concepts

User creates a new project in Visual
Studio/Xcode
• A solution and a folder are created at the same

time with the same name as the project
• The project belongs to the solution
• Multiple projects can be included in a solution

Solution

• Contains several folders that define an
application’s structure

• Solution files have a file suffix of e.g. .sln

Project: contains files for a part of the
solution
• Project file is used to create an executable

application
• A project file has a suffix
• Every project has a type (Console, Windows, etc.)

Creating and opening solutions: README.md

Visual studio

Xcode

Project files

Building projects

Details

First Steps:

1. Install required tooling (if working on non-ECS machine)
○ C++ Compiler / IDE
○ Update OpenGL 3.30 drivers (if needed, but probably already installed)
○ CMake

2. Download and compile the CGRA framework
3. Create your source files (src/objfile.h, src/objfile.cpp) and add

them to src/CMakeLists.txt
4. Implement your class with hard-coded placeholder geometry (eg: a

tetrahedron) before attempting loadObj
○ Use src/triangle.hpp as example code for setup(), draw(), and destroy()

CGRA Framework Overview

CGRA Framework
Key Components

README.md: Very detailed and incredibly
helpful!
build: Where you will generate your platform-
specific project files with CMake. Delete the
contents of this when you submit your
assignment.
work: Contains all the actual content.
work/src: Put all your source files here.
work/res: Contains a teapot asset and
shader code.
src/CMakeLists.txt: Tells CMake what
files to include in the build; update this every
time you add create a new source file or
folder. Be careful not to confuse this with the
CMakeLists.txt in the root folder.
src/application.cpp: This is the main
class you’ll be modifying to instantiate and
call out to your .obj parser.
src/triangle.hpp: Provides a very simple
geometry implementation. You can use this as
a base for your build(), draw(), and
destroy() methods, but note that it may
structure its data in a different way to you.

Adding Files and
Folders to CMake

Every folder which contains C++ code
contains a CMakeLists.txt file, which
you need to update every time you add a
new file or folder.
For Assignment 1, you only need to add
code to work/src, and so you only need
to work with
work/src/CMakeLists.txt.
When creating a new file, find the
SET(sources ...) section of the file,
and add your filename.
When creating a new folder, add an
add_subdirectories() statement
with the name of your folder to the
CMakeLists.txt in its parent directory.
Then, create a CMakeLists.txt in your
folder. You can use the code on the right
as a template.

###
Source Files
###

----TODO-------------------
list your source files here

SET(sources
 "application.hpp"
 "application.cpp"

 "opengl.hpp"

 "main.cpp"

 "triangle.hpp"

 "CMakeLists.txt"
)

----TODO---------------------
list your subdirectories here

add_subdirectory(cgra)

Building with CMake

We use CMake to allow cross-platform
compilation. CMake uses files called
CMakeLists.txt in multiple folders to
describe how to compile the project.
CMake does not compile the program. Instead,
it generates native build configurations
(makefiles, project/solution files, etc.) for your
computer, which you can then use with the
compiler you have installed.

There is a platform-specific way for each platform (covered
in readme.md), but in general the way it works is:
● Navigate your terminal to ./build
● Run cmake with the path ../work

○ This will generate the files in ./build
● Run your normal compiler/build system
● cd .. to return to the root directory, then

call./build/base to run your project

Several recent versions of IDEs (Visual Studio,
CLion) have built-in support for CMake projects,
so you don’t have to manually re-run CMake
when you add a new file to the project.

CLion

1. Cross-platform Windows/Mac/Linux, available on ECS computers

2. Based on IntelliJ - familiar

3. CMake integration, don’t need to manually generate projects, can auto-add

files to CMakeLists.txt

4. Free for university students

CLion setup

Sign up with your uni email https://www.jetbrains.com/shop/eform/students

Compiler configuration:

Windows https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-windows.html

Mac https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-macos.html

Open the work/ folder of
the framework download,
and make sure the “base”
target is selected

This is the one with your
code in it

https://www.jetbrains.com/shop/eform/students
https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-windows.html
https://www.jetbrains.com/help/clion/quick-tutorial-on-configuring-clion-on-macos.html

CMake in Visual Studio (Windows)

1. Install CMake tools when installing Visual Studio

2. Open the work/ folder of the framework with the “Open a local
folder option”

3. Set the startup item to “base.exe”

CMake in VS was introduced in VS17 but support has changed in new versions
https://docs.microsoft.com/en-us/cpp/build/cmake-projects-in-visual-studio?view=msvc-170

https://docs.microsoft.com/en-us/cpp/build/cmake-projects-in-visual-studio?view=msvc-170

Building for XCode (MacOS)

1. Open a Terminal window and navigate to the “.../base/build”
directory. Use “cd” to change directory.

2. Call the command “cmake -G "XCode" ../work”. This will build your
framework so that it can be opened in XCode.

3. Change the scheme to “base”

Useful links

https://docs.microsoft.com/en-us/visualstudio/ide/getting-
started-with-cpp-in-visual-studio?view=vs-2019

https://codewithchris.com/xcode-tutorial/

https://www.geeksforgeeks.org/introduction-to-visual-studio/

