
Image-Based Computer Graphics

CGRA 352

Advanced image editing and processing tools

Image Composition

How to insert new objects?

• Key idea: Retain the gradient information as best as possible

Poisson editing for seamless cloning

• What happened to the color after cloning?

[Perez 2003]

How to insert new objects?

Guidance vector field
(Gradient vectors)

f*:Destination function
f: Unknown function

Source function g
(The original
region to insert)

S: Image domain

Closed
subset of S

1D example

Seamlessly paste onto

Directly put it here, obviously not a good idea Adjust the values to maintain the differences between neighboring
pixels while satisfying boundary conditions.

How we can do that

How we can do that

Minimize it by solving linear systems

2D poisson blending

• In 2D, the gradient of the source

image region is a vector field v.

• We want to minimize the difference:

2
*min | |

f
f with f f 


 − = v

what does this term do? what does this term do?

Gradient of f looks like
gradient of g

f is equivalent to f* at
the boundaries

V is known, since
the source function
g is known

2D poisson blending

𝛻𝑓 − 𝒗 𝟐 =
𝜕𝑓

𝜕𝑥
− 𝑢

2

+
𝜕𝑓

𝜕𝑦
− 𝑣

2

2
*min | |

f
f with f f 


 − = v

2D poisson blending

• The solution for minimization is the unique solution for this
Poisson equation (with Dirichlet boundary conditions)

𝛻𝑓 − 𝒗 𝟐 =
𝜕𝑓

𝜕𝑥
− 𝑢

2

+
𝜕𝑓

𝜕𝑦
− 𝑣

2

2
*min | |

f
f with f f 


 − = v

𝑑𝑖𝑣 𝐯 =
𝜕𝑣

𝜕𝑦
+
𝜕𝑢

𝜕𝑥
∆𝑓 =

𝜕2𝑓

𝜕𝑥2
+
𝜕2𝑓

𝜕𝑦2

Laplacian Divergence

𝜕2𝑓

𝜕𝑥2
+
𝜕2𝑓

𝜕𝑦2
=
𝜕𝑣

𝜕𝑦
+
𝜕𝑢

𝜕𝑥

2D poisson blending

Dirichlet boundary condition
It specifies the values of a solution needs to
take on the boundary of the domain

2D poisson blending

• Let’s first recall gradient again

∆𝑓 =
𝜕𝑓2

𝜕𝑥2
+
𝜕𝑓2

𝜕𝑦2
= 𝐼 𝑥 + 1, 𝑦 + 𝐼 𝑥 − 1, 𝑦 − 2𝐼 𝑥, 𝑦 + 𝐼 𝑥, 𝑦 + 1 + 𝐼 𝑥, 𝑦 − 1 − 2𝐼 𝑥, 𝑦

= 𝐼 𝑥 + 1, 𝑦 + 𝐼 𝑥 − 1, 𝑦 + 𝐼 𝑥, 𝑦 + 1 + 𝐼 𝑥, 𝑦 − 1 − 4𝐼 𝑥, 𝑦

𝐼𝑡 𝑖𝑠 𝐼 𝑥 + 1 + 𝐼 𝑥 − 1 − 2𝐼 𝑥For 2D

Linear System

∆𝑔

𝐼 𝑥 + 1, 𝑦 + 𝐼 𝑥 − 1, 𝑦 + 𝐼 𝑥, 𝑦 + 1 + 𝐼 𝑥, 𝑦 − 1 − 4𝐼 𝑥, 𝑦 = ∆𝑔

We have know G, so the second derivative is know for every point.

෍

𝑞∈𝑁𝑝

𝑓𝑞 − 4𝑓𝑝 = ෍

𝑞∈𝑁𝑝

𝑔𝑞 − 4𝑔𝑝

∆𝑔

.

.

I(x, y-1)

.

.

.

I(x-1,y)

I(x,y)

I(x+1,y)

.

.

.

I(x,y+1)

.

.

w

w

Linear System

• In that linear system, note that the pixels at the region
borders are also known as the same with the target image. So
in vector “x”, not all the pixels need to be solved

• Matrix A will look like this:

Linear System

OpenCV and Matlab both provide linear system solvers, if you can define your problem in this form, use them!

What if we do not want to do color blending?

From the Art & Science of
Digital Compositing

In many occasions, we do
not want to change the
color of the inserted
objects.

What if we do not want to do color blending?

Magazine covers
We also need composite
things with different
background

If we only use binary mask…

causes jaggy artifacts similar to point-sampled rasterization

Is this pixel part of the foreground? Only yes or no for a binary mask

Alpha matting

• Key Idea: pixels near boundary are not strictly foreground or
background -- adding an Alpha channel

An extra alpha channel:
α=1 means opaque, α=0 means

transparent

Why do we need fractional alpha?

• Thin features (e.g. hair) cause mixed pixels

• Motion blurs “smears” objects into background

Alpha matting

[Figure from Pat Hanrahan]

The matting equation:
𝐶 = 𝛼𝐹 + 1 − 𝛼 𝐵

α is a floating point number from 0 to 1

Why matting is hard

• 𝐶 = 𝛼𝐹 + 1 − 𝛼 𝐵 for three channels

• We have to get fewer unknowns

(or more equations)

𝐶𝑟 = 𝛼𝐹𝑟 + 1 − 𝛼 𝐵𝑟
𝐶𝑔 = 𝛼𝐹𝑔 + 1 − 𝛼 𝐵𝑔
𝐶𝑏 = 𝛼𝐹𝑏 + 1 − 𝛼 𝐵𝑏

Equations: 3
3 channels of the
observed color

Unknowns: 7
3 channels of the
foreground/background color, and 𝛼

Traditional blue/green screen matting

• Invented by Petro Vlahos (Technical Academy Award 1993)

Initially for film, then video, then digital
• Assume that the foreground has no blue/green
• Assume background is mainly blue/green

Traditional blue/green screen matting

• Idealized version:

– no blue in foreground. Only blue in background

– Equations can be simplified:

𝐹𝑏 = 0 𝑎𝑛𝑑 𝐵𝑟 = 𝐵𝑔 = 0

𝐶𝑟 = 𝛼𝐹𝑟 + 1 − 𝛼 𝐵𝑟
𝐶𝑔 = 𝛼𝐹𝑔 + 1 − 𝛼 𝐵𝑔
𝐶𝑏 = 𝛼𝐹𝑏 + 1 − 𝛼 𝐵𝑏

𝐶𝑟 = 𝛼𝐹𝑟
𝐶𝑔 = 𝛼𝐹𝑔

𝐶𝑏 = 1 − 𝛼 𝐵𝑏

3 equations in 3 unknowns

Problem Solved!

Issues

The background illuminates the foreground,
blue/green at silhouettes

The background blue screen reflects blue on the wing surfaces

Natural Image Matting

• Someone has to specify which part is supposed to be extracted

• Normally take an initial binary map as input, then analyze the
pixels along the boundaries.

From the initial boundaries, we derive a TRIMAP, where the alpha values should be solved.
(Otherwise alpha = 1 / 0 for foreground/background)

Natural Image Matting

• Important assumption: F,B are approximately constant in a
window (Local smooth assumption)

Different weights for every pixel
to combine foreground color
and background color

Natural Image Matting

• We can further assume that alpha is a linear transform of the
input image within a local window

Guided image filtering for fast matting

Guided image filtering:

• The key assumption of the guided filter is a local linear model
between the guidance I and the filtering output q for input p.
(The same as what we want to solve in the matting problem)

some linear coefficients assumed to be constant in the window k

This local linear model
ensures that q has an edge
only if I has an edge

[He et al. TPAMI 2013}

Guided image filtering

Guided image filtering:

• We seek a solution that minimizes the difference between q
and p while maintaining that linear model

𝑞𝑖

𝜔𝑘

Using linear regression (see Applied Regression Analysis. 2 edn), the
solution would be:

Pixel in input image: p, output pixel: q, guidance map: I

• However, a pixel i is involved in all the overlapping windows 𝜔
that covers i, so the value of output is not identical when it is
computed in different windows.

• We average all the possible values

• Noticing that

• Rewrite the above equation as:

Guided image filtering

𝜔𝑘 𝜔𝑙

𝜔𝑚
𝑞𝑖

Filtering for matting

Guide Image, I

Input Image, p

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝛼, 0 𝑎𝑛𝑑 1)

𝜶𝒊 =
1

𝜔
෍

𝑖∈𝜔𝑘

(𝑎𝑘𝐼𝑖 + 𝑏𝑘)

𝛼𝑖

A window 𝜔 has
a width of 2r

How to understand it?

𝜖 controls how smooth you want in the final results, normally
you can take a small one like 0.1 to get finer details

𝜶𝑖
𝑘 = 𝑎𝑘𝐼𝑖 + 𝑏𝑘 = 𝑎𝑘𝐼𝑖 + 𝑝𝑘 − 𝑎𝑘𝜇𝑘 = 𝑎𝑘 𝐼𝑖 − 𝜇𝑘 + 𝑝𝑘

For each pixel in a window, we have

Covariance shows the tendency in
the linear relationship between the
variables, if there are unwanted noisy
parts, it will contribute less to the final
result

So 𝑎𝑘 controls how much it contributes to the transparency value
(For the pixel with an initial alpha value of 1, imagine that we should
reduce some transparency from 1)𝜶𝑖

𝑘𝐺𝑢𝑖𝑑𝑒 𝐼 Input, p

Filtering for matting

𝛼
The abbreviations of correlation (corr),
variance (var), and covariance (cov) indicate
the intuitive meaning of these variables.

Input: filtering input image p,

guidance image I, radius r,

regularization 𝜖
Output: filtering output 𝛼.

For every window in the image,
compute all the values for a and
b for all the covered pixels.

𝜔𝑘 𝜔𝑙

𝜔𝑚
Then for every pixel, every
computed a values and b values
should be averaged

One result

Guide I

One result

Input mask, only 0 and 255 (representing 0 and 1)

One result

Filtered image gray level (representing alpha value from 0 to 1)

Matting results

