Image-Based Computer Graphics

Advanced image editing and processing tools

How to insert new objects?

- Key idea: Retain the gradient information as best as possible

Poisson editing for seamless cloning

- What happened to the color after cloning?

[Perez 2003]

1D example

How we can do that

- Copy

to

How we can do that

Minimize it by solving linear systems

2D poisson blending

- In 2D, the gradient of the source image region is a vector field.
- We want to minimize the difference:

$$
\Sigma \Sigma(D f)-\vec{v})^{2}
$$

 what does this term do? Gradient of f looks like gradient of g
what does this term do?
f is equivalent to f^{*} at the boundaries

2D poisson blending

$$
\begin{aligned}
& \min _{f} \iint_{\Omega}|\nabla f-\mathbf{v}|^{2} \text { with }\left.\quad f\right|_{\partial \Omega}=\left.f^{*}\right|_{\partial \Omega} \\
& |\nabla f-v|^{2}=\left(\frac{\partial f}{\partial x}-u\right)^{2}+\left(\frac{\partial f}{\partial y}-v\right)^{2} \quad(u, v)=\nabla g
\end{aligned}
$$

2D poisson blending

$$
\begin{aligned}
& \min _{f} \iint_{\Omega}|\nabla f-\mathbf{v}|^{2} \text { with }\left.\quad f\right|_{\partial \Omega}=\left.f^{*}\right|_{\partial \Omega} \\
& |\nabla f-v|^{2}=\left(\frac{\partial f}{\partial x}-u\right)^{2}+\left(\frac{\partial f}{\partial y}-v\right)^{2} \quad(u, v)=\nabla g
\end{aligned}
$$

- The solution for minimization is the unique solution for this Poisson equation (with Dirichlet boundary conditions)

$$
\begin{gathered}
\Delta f=\operatorname{div} \mathbf{v} \quad \text { over } \Omega, \quad \text { with }\left.\quad f\right|_{\partial \Omega}=\left.f^{*}\right|_{\partial \Omega} \\
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \quad \operatorname{div} \mathbf{v}=\frac{\partial v}{\partial y}+\frac{\partial u}{\partial x} \longrightarrow \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial v}{\partial y}+\frac{\partial u}{\partial x} \\
\text { Divergence }
\end{gathered}
$$

2D poisson blending

So what does this mean ...

$$
\begin{aligned}
\operatorname{div} \mathbf{v} & =\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \\
& =\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}} \\
& =\Delta g
\end{aligned}
$$

Gradient $\quad \mathbf{v}=(u, v)=\nabla g$

Laplacian $\quad \Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$
Laplacian of f same as g
$\Delta f=\operatorname{div} \mathbf{v}$ over Ω, with $\left.f\right|_{\partial \Omega}=\left.f^{*}\right|_{\partial \Omega}$

Dirichlet boundary condition
It specifies the values of a solution needs to take on the boundary of the domain

2D poisson blending

- Let's first recall gradient again
first-order finite difference

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+0.5 h)-f(x-0.5 h)}{h}
$$

second-order finite difference
$f^{\prime \prime}(x) \approx \frac{\delta_{h}^{2}[f](x)}{h^{2}}=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}$.

For 2D

$$
\text { It is } I(x+1)+I(x-1)-2 I(x)
$$

$\Delta f=\frac{\partial f^{2}}{\partial x^{2}}+\frac{\partial f^{2}}{\partial y^{2}}=I(x+1, y)+I(x-1, y)-2 I(x, y)+I(x, y+1)+I(x, y-1)-2 I(x, y)$

$$
=I(x+1, y)+I(x-1, y)+I(x, y+1)+I(x, y-1)-4 I(x, y)
$$

Linear System

So for each pixel p

$$
\begin{gathered}
\Delta f_{p}=\Delta g_{p} \\
\sum_{q \in N_{p}} f_{q}-4 f_{p}=\sum_{q \in N_{p}} g_{q}-4 g_{p}
\end{gathered}
$$

What's known, what's unknown?
w

X

$$
I(x+1, y)+I(x-1, y)+I(x, y+1)+I(x, y-1)-4 I(x, y)=\Delta g
$$

$$
\text { We have know } G \text {, so the second derivative is know for every point. }
$$

Linear System

- In that linear system, note that the pixels at the region borders are also known as the same with the target image. So in vector " x ", not all the pixels need to be solved
- Matrix A will look like this:

$$
\left[\begin{array}{cccccccccccc}
& & 1 & -4 & 1 & & & & 1 & & & \\
& & & 1 & -4 & 1 & & & & 1 & & \\
1 & & & & 1 & -4 & 1 & & & & 1 & \\
& 1 & & & & 1 & -4 & 1 & & & & \\
& & & & & & & \\
& 1 & & & & 1 & -4 & 1 & & & 1 & \\
& & & 1 & & & & 1 & -4 & 1 & & \\
& & & & 1 & & & & 1 & -4 & 1 & \\
& & & & & & &
\end{array}\right]
$$

Linear System

General form of linear least squares
(Warning: change of notation. x is a vector of parameters!)

$$
\begin{aligned}
E_{\mathrm{LLS}} & =\sum_{i}\left|\boldsymbol{a}_{i} \boldsymbol{x}-\boldsymbol{b}_{i}\right|^{2} \\
& =\|\mathbf{A} \boldsymbol{x}-\boldsymbol{b}\|^{2} \quad \text { (matrix form) }
\end{aligned}
$$

Minimize the error:
Expand
$E_{\mathrm{LLS}}=\boldsymbol{x}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right) \boldsymbol{x}-2 \boldsymbol{x}^{\top}\left(\mathbf{A}^{\top} \boldsymbol{b}\right)+\|\boldsymbol{b}\|^{2}$

Take derivative
$\left(\mathbf{A}^{\top} \mathbf{A}\right) \boldsymbol{x}=\mathbf{A}^{\top} \boldsymbol{b}$
(normal equation)

Solve for x

$$
\boldsymbol{x}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \boldsymbol{b}
$$

source/destination

cloning

OpenCV and Matlab both provide linear system solvers, if you can define your problem in this form, use them!

What if we do not want to do color blending?

Plate 95 An element that features a miniature of the ship.
animated sky.

Plate 96 An intermediate efement that contains computer-generated water and an

Plate 98 An element used to control the atmosphere on the dock.

In many occasions, we do not want to change the color of the inserted objects.

From the Art \& Science of Digital Compositing

What if we do not want to do color blending?

If we only use binary mask...

causes jaggy artifacts similar to point-sampled rasterization
Is this pixel part of the foreground? Only yes or no for a binary mask

Alpha matting

- Key Idea: pixels near boundary are not strictly foreground or background -- adding an Alpha channel

An extra alpha channel:
$\alpha=1$ means opaque, $\alpha=0$ means

Why do we need fractional alpha?

- Thin features (e.g. hair) cause mixed pixels

Composite

- Motion blurs "smears" objects into background

Alpha matting

The matting equation:

$$
C=\alpha F+(1-\alpha) B
$$

α is a floating point number from 0 to 1

Why matting is hard

- $C=\alpha F+(1-\alpha) B$ for three channels

Equations: 3 3 channels of the observed color

$$
\begin{array}{rlrl}
C_{r} & =\alpha F_{r}+(1-\alpha) B_{r} & & \text { Unknowns: 7 } \\
C_{g} & =\alpha F_{g}+(1-\alpha) B_{g} & \text { 3 channels of the } \\
C_{b} & =\alpha F_{b}+(1-\alpha) B_{b} & \text { foreground/background color, and } \alpha
\end{array}
$$

- We have to get fewer unknowns (or more equations)

Traditional blue/green screen matting

- Invented by Petro Vlahos (Technical Academy Award 1993)

Petro Olahos GORDON E. SAWYER AWARD 66TH ACADEMY AWARDS

1993

Initially for film, then video, then digital

- Assume that the foreground has no blue/green
- Assume background is mainly blue/green

Traditional blue/green screen matting

- Idealized version:
- no blue in foreground. Only blue in background $F_{b}=0$ and $B_{r}=B_{g}=0$
- Equations can be simplified:

$$
\begin{aligned}
& C_{r}=\alpha F_{r}+(1-\alpha) B_{r} \\
& C_{g}=\alpha F_{g}+(1-\alpha) B_{g} \\
& C_{b}=\alpha F_{b}+(1-\alpha) B_{b}
\end{aligned} \quad \square \quad \begin{gathered}
C_{r}=\alpha F_{r} \\
C_{g}=\alpha F_{g} \\
C_{b}=(1-\alpha) B_{b} \\
\text { 3 equations in 3 unknowns }
\end{gathered}
$$

Issues

The background illuminates the foreground, blue/green at silhouettes

Natural Image Matting

- Someone has to specify which part is supposed to be extracted
- Normally take an initial binary map as input, then analyze the pixels along the boundaries.

From the initial boundaries, we derive a TRIMAP, where the alpha values should be solved. (Otherwise alpha = 1 / 0 for foreground/background)

Natural Image Matting

- Important assumption: F,B are approximately constant in a window (Local smooth assumption)

Different weights for every pixel to combine foreground color
 and background color

Natural Image Matting

- We can further assume that alpha is a linear transform of the input image within a local window

$$
\begin{aligned}
& I_{i} \approx \alpha_{i} F+\left(1-\alpha_{i}\right) B \quad i \in w \\
& \prod_{i} \approx a I_{i}+b \quad a=\frac{1}{F-B}, b=\frac{-B}{F-B} \\
& \alpha_{i} \approx
\end{aligned}
$$

Guided image filtering for fast matting

Guided image filtering:

- The key assumption of the guided filter is a local linear model between the guidance I and the filtering output q for input p. (The same as what we want to solve in the matting problem)

$$
q_{i}=a_{k} I_{i}+b_{k}, \forall i \in \omega_{k}
$$

some linear coefficients assumed to be constant in the window k
This local linear model ensures that q has an edge only if I has an edge
[He et al. TPAMI 2013\}

$$
a_{i} \approx a I_{i}+b \quad a=\frac{1}{F-B}, b=\frac{-B}{F-B}
$$

Guided image filtering

Guided image filtering:
Pixel in input image: p, output pixel: q, guidance map: I

- We seek a solution that minimizes the difference between q and \mathbf{p} while maintaining that linear model

$$
E\left(a_{k}, b_{k}\right)=\sum_{i \in \omega_{k}}\left(\left(a_{k} I_{i}+b_{k}-p_{i}\right)^{2}+\epsilon a_{k}^{2}\right)
$$

Using linear regression (see Applied Regression Analysis. 2 edn), the solution would be:

$$
a_{k}=\frac{\frac{1}{|\omega|} \sum_{i \in \omega_{k}} I_{i} p_{i}-\mu_{k} \bar{p}_{k}}{\sigma_{k}^{2}+\epsilon}
$$

$$
b_{k}=\bar{p}_{k}-a_{k} \mu_{k}
$$

μ_{k} and σ_{k}^{2} are the mean and variance of I in $\omega_{k}, \bar{p}_{k}=\frac{1}{|\omega|} \sum_{i \in \omega_{k}} p_{i}$ is the mean of p in ω_{k}.

Guided image filtering

- However, a pixel i is involved in all the overlapping windows ω that covers i, so the value of output is not identical when it is computed in different windows.
- We average all the possible values

$$
q_{i}=\frac{1}{|\omega|} \sum_{k \mid i \in \omega_{k}}\left(a_{k} I_{i}+b_{k}\right)
$$

- Noticing that $\sum_{k \mid i \in \omega_{k}} a_{k}=\sum_{k \in \omega_{i}} a_{k}$
- Rewrite the above equation as:

$$
q_{i}=\bar{a}_{i} I_{i}+\bar{b}_{i}
$$

Filtering for matting

Guide Image, I

Input Image, p (Initial $\alpha, 0$ and 1)

$$
a_{k}=\frac{\frac{1}{|\omega|} \sum_{i \in \omega_{k}} I_{i} p_{i}-\mu_{k} \bar{p}_{k}}{\sigma_{k}^{2}+\epsilon} \quad b_{k}=\bar{p}_{k}-a_{k} \mu_{k} .
$$

A window ω has a width of $2 r$

$$
\boldsymbol{\alpha}_{i}=\frac{1}{|\omega|} \sum_{i \in \omega_{k}}\left(a_{k} I_{i}+b_{k}\right)
$$

How to understand it?

For each pixel in a window, we have

$$
a_{k}=\frac{\frac{1}{|\omega|} \sum_{i \in \omega_{k}} I_{i} p_{i}-\mu_{k} \bar{p}_{k}}{\sigma_{k}^{2}+\epsilon} \quad b_{k}=\bar{p}_{k}-a_{k} \mu_{k}
$$

$$
\boldsymbol{\alpha}_{i}^{k}=a_{k} I_{i}+b_{k}=a_{k} I_{i}+\left(\overline{p_{k}}-a_{k} \mu_{k}\right)=a_{k}\left(I_{i}-\mu_{k}\right)+\overline{p_{k}}
$$

$$
a_{k}=\frac{\frac{1}{|\omega|} \sum_{i \in \omega_{k}} I_{i} p_{i}-\mu_{k} \bar{p}_{k}}{\sigma_{k}^{2}+\epsilon}
$$

Covariance shows the tendency in the linear relationship between the variables, if there are unwanted noisy parts, it will contribute less to the final result
ϵ controls how smooth you want in the final results, normally you can take a small one like 0.1 to get finer details

So a_{k} controls how much it contributes to the transparency value (For the pixel with an initial alpha value of 1, imagine that we should reduce some transparency from 1)

$$
\alpha_{i} \approx a I_{i}+b \quad a=\frac{1}{F-B}, b=\frac{-B}{F-B}
$$

Filtering for matting

Input: filtering input image p , guidance image I, radius r, regularization ϵ
Output: filtering output α.

For every window in the image, compute all the values for a and b for all the covered pixels.

Then for every pixel, every computed a values and b values should be averaged

The abbreviations of correlation (corr), variance (var), and covariance (cov) indicate the intuitive meaning of these variables.

$$
\text { 1: } \begin{aligned}
& \operatorname{mean}_{I}=f_{\text {mean }}(I) \\
& \operatorname{mean}_{p}=f_{\text {mean }}(p) \\
& \operatorname{corr}_{I}=f_{\text {mean }}(I . * I) \\
& \operatorname{corr}_{I p}=f_{\text {mean }}(I . * p)
\end{aligned}
$$

2: $\operatorname{var}_{I}=\operatorname{corr}_{I}-\operatorname{mean}_{I} . * \operatorname{mean}_{I}$

$$
\operatorname{cov}_{I p}=\operatorname{corr}_{I p}-\operatorname{mean}_{I} . * \operatorname{mean}_{p}
$$

$$
\text { 3: } a=\operatorname{cov}_{I p} \cdot /\left(\operatorname{var}_{I}+\epsilon\right)
$$

$$
b=\operatorname{mean}_{p}-a . * \operatorname{mean}_{I}
$$

$$
\text { 4: } \operatorname{mean}_{a}=f_{\text {mean }}(a)
$$

$$
\operatorname{mean}_{b}=f_{\text {mean }}(b)
$$

5: $\alpha=\operatorname{mean}_{a} \cdot * I+\operatorname{mean}_{b}$

One result

Guide I

One result

Input mask, only 0 and 255 (representing 0 and 1)

One result

Filtered image gray level (representing alpha value from 0 to 1)

Matting results

