
CGRA 151 Worksheets Page 1 of 5

Worksheet 3 — basic curves and transformations

Drawing a Bézier curve

Open Processing.

Get a simple Bézier curve on the screen.

float x1=50,y1=50,x2=250,y2=50,x3=250,y3=250,x4=50,y4=250;

void setup() {

 size(300, 300) ;

}

void draw() {

 background(255);

 stroke(0);

 noFill();

 bezier(x1, y1, x2, y2, x3, y3, x4, y4);

}

Remember to press the run button at the end of each section in this worksheet, to see
what the code does.

Find a point on the curve, using bezierPoint(), and draw a dot at that point

Add a variable at the top of the program to tell Processing at what parameter value along
the curve you want the dot to be drawn. The parameter value should be between 0.0
(which is the value at the start of the curve) and 1.0 (the value the end of the curve):

float t = 0.5 ;

Add code to find the location of the point at that parameter value:

float x = bezierPoint(x1, x2, x3, x4, t);

float y = bezierPoint(y1, y2, y3, y4, t);

Notice that we handle x and y completely independently. There is one function call to find
the x-coordinate, based on the x-coordinates of the Bézier control points; and there is a
second function to call to find the y-coordinate, based on the y-coordinates of the Bézier
control points.

Now draw a red circle at that point:

noStroke();

fill(255, 0, 0);

ellipse(x, y, 20, 20);

Animate the red circle moving along the curve

To do this you need to increment the parameter t on each time through the draw()
function, and make sure that it is always between 0.0 and 1.0:

t += 0.01 ;

if (t>1.0) { t=0.0; }

CGRA 151 Worksheets Page 2 of 5

Can you modify this to make the circle bounce backwards and forwards along the curve,
rather than jumping to the start when it gets to the end?

Drawing a tangent vector using bezierTangent()

We next want to make a line that points in the direction that the circle is moving. We do this
by finding a vector that is tangent to the curve at the current point and then drawing a line
in the direction of that vector. Processing has a function to find the tangent vector:

float xTangent = bezierTangent(x1, x2, x3, x4, t);

float yTangent = bezierTangent(y1, y2, y3, y4, t);

As with the bezierPoint() function, we use bezierTangent() to calculate the x
and y components separately.

To draw the tangent line, we draw a line from the current point to the current point plus the
tangent vector. So:

stroke(255,0,0) ;

line(x, y, x+xTangent, y+yTangent) ;

Notice how long that tangent vector is. A shorter line would be more
useful to us to indicate the direction and size of the vector. To get a
shorter line in the right direction, replace xTangent and yTangent
with xTangent/6 and yTangent/6 (see diagram at right). You will
be able to see that the tangent vector changes length as it moves.

Using translation

Instead of drawing our circle centred at point (x,y), we can get the same effect by drawing
the circle centred at (0,0) and using a translation to get it to the right place. Replace the
existing ellipse() command with:

translate(x, y) ;

ellipse(0, 0, 20, 20);

And replace the existing line() command with:

line(0, 0, xTangent/6, yTangent/6) ;

You get the same result as before but you no longer need to use x and y in either of the

shape definitions. Notice how this has simplified the parameters in the call to the line()
function.

Using rotation

We can also remove xTangent and yTangent from the shape definition using a rotation.

Replace the line() function with a line starting at the origin and pointing along the x-axis:

line(0, 0, 50, 0);

This line does not change length as it moves but you’ll notice that it also just keeps pointing
to the right: it does not point along the curve. We can get it to point along the curve by
adding another transformation:

rotate(angle) ;

CGRA 151 Worksheets Page 3 of 5

But what should angle be? We can get the angle from the tangent vector

(xTangent,yTangent) by using the function:

float angle = atan2(yTangent, xTangent) ;

The name of the function, atan2, derives from “arctangent” with “2” arguments. The
arctangent function returns the angle whose tangent is yTangent/xTangent. We need
two arguments to distinguish between angles 180 degrees apart, which have the same
numerical value for tangent but which point in opposite directions. By giving it yTangent

and xTangent separately, it can distinguish between these cases (e.g., consider the
difference between atan2(1,1) = 45 degrees and atan2(-1,-1) = 215 degrees).

So now we have shapes defined relative to the origin and pointing along the x-axis, which
are put into their correct position and rotation using the functions translate() and
rotate().

A more complicated shape

This use of translate() and rotate() may not seem to be much of a win in this case,
but it helps enormously if you have a more complicated shape. For example, replace the
ellipse() and the line() with this shape:

beginShape();

 vertex(0,0);

 vertex(-10,-10);

 vertex(30,0);

 vertex(-10,10);

endShape(CLOSE);

You should get a red arrow shape that moves smoothly along the curve and points along the

curve. If you tried to do this without using translate() and rotate(), you would
need a lot of tedious mathematics to work out exactly where to put the four vertices.

Put the point of the arrow on the curve, rather than the tail

Can you modify the shape definition so that the front point of the arrow lies on the curve?

Moving a curve point using the mouse

As an example of interaction, we will write code to allow the user to move the starting point
of the curve. We can do this by using the mouseDragged() callback function.

void mouseDragged(){

 x1 = mouseX ;

 y1 = mouseY ;

}

This allows you to move only the first point, (x1,y1). If you want to drag more points, you

need to write code for the mousePressed() callback that finds which point the mouse is
closest to, and remembers that point, then use the mouseDragged() callback to move
that point. In this case, it would be convenient to have an array of the points’ locations
rather than the separate variables we have used in this worksheet. Also, it helps if some sort
of indicator mark is drawn at the points’ locations, such as a little square, so that the user
knows where the points are.

CGRA 151 Worksheets Page 4 of 5

Drawing the line differently

Processing uses the strokeWeight() to set the width of a line.
Experiment with strokeWeight() to see if you can make it appear as
if the shape is moving down a black pipe.

Intersecting two lines

In Assignment 3, you are going to have to find the intersection
between two lines. So let’s do a bit of work on handling a
couple of lines.

In your code, get rid of the Bézier curve and get the code to
draw just two lines. The example to the right also draws circles
on the end points.

 stroke(0);

 noFill();

 line(x1,y1, x2,y2);

 line(x3,y3, x4,y4);

The mathematics of finding the intersection of two lines

How do we now find the intersection between these two lines P1P2 and P3P4? We went
through this in lectures. What we are going to do is represent one of the lines
parametrically, as a pair of equations giving x and y as a function of a parameter s; we then
represent the other line implicitly, as a function that is equal to zero when a point lies on the
line ax + by + c = 0. We substitute the parametric form of the first line into the implicit form
of the second line and solve for the value s, which will tell us the location on the first line
that is also on the second line.

First we write one of the lines parametrically in the form P(s)=(1-s)P1+sP2, which expands
out to the two equations x(s)=(1-s)x1+sx2 and y(s)=(1-s)y1+sy2.

For the other line, P3P4, we use the implicit form of the line equation: ax+by+c=0.

We now substitute into that implicit equation the parametric equations for the first line,
giving us:

a[(1-s)x1+sx2] + b[(1-s)y1+sy2] + c = 0

The value of s tells us where on line P1P2 there is a point that also lies on line P3P4. We need
to find the value of s. We can rearrange that equation to solve for s:

 a[x1+s(x2-x1)] + b[y1+s(y2-y1)] + c = 0 put all the “s” things together in each [] section

⇒ ax1 + sa(x2-x1) + by1 + sb(y2-y1) + c = 0 expand out

⇒ ax1 + by1 + c + s[a(x2-x1)+b(y2-y1)] = 0 group together “s” things and “non-s” things

⇒ s = -[ax1 + by1 + c] / [a(x2-x1)+b(y2-y1)] get s on its own on one side of the equals sign

Now, we’ve done all that manipulation without revealing how to calculate the values of a, b,
c. They are calculated from the positions of P2 and P3, as explained in the lecture notes:

a = -(y4-y3) b = (x4-x3) c = x3y4-y3x4

CGRA 151 Worksheets Page 5 of 5

That is a lot of maths to get a single intersection point. To program this up, we can do the

following, which gets us the intersection point (xi,yi).
 float a = ...

 float b = ...

 float c = ...

 float s = ...

 float xi = (1-s)*x1 + s*x2;

 float yi = (1-s)*y1 + s*y2;

 fill(0,128,0);

 ellipse(xi, yi, 10, 10);

You need to work out what to put in place of the “...”

If you run this, you won’t see any difference at first because the two lines are nearly parallel
(see picture below) so the intersection point is way outside the window to the right. Move
one of the points so that the two lines intersect and you’ll see the green intersection point
appear in the window.

At left: what you’ll see when the sketch starts: the intersection point is a long way off to the
right, so you cannot see it.

In the middle: one of the end points (red) has been dragged down and the intersection point
is drawn in green.

At right: the intersection is between infinitely long lines so it appears even if the line
segments themselves don’t intersect.

Challenges

Challenge 1: how do you change the code so that you only
draw the intersection point if the intersection lies between

point P1=(x1,y1) and point P2=(x2,y2)?
Hint: consider what the value of s will be for this case.

Challenge 2: how do you change the code to draw a line that
goes through the two end points right to the edges of the
window?
Hint: This requires you to find the intersection point of the
infinite line with each of the four edges of the window and then draw a line between the
middle two of those edge-intersections.

