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Worksheet 3 — basic curves and transformations 

Drawing a Bézier curve 

Open Processing. 

Get a simple Bézier curve on the screen. 

float x1=50,y1=50,x2=250,y2=50,x3=250,y3=250,x4=50,y4=250; 

void setup() { 

  size(300, 300) ; 

} 

void draw() { 

  background(255); 

  stroke(0); 

  noFill(); 

  bezier(x1, y1, x2, y2, x3, y3, x4, y4);  

} 

Remember to press the run button  at the end of each section in this worksheet, to see 
what the code does. 

Find a point on the curve, using bezierPoint(), and draw a dot at that point 

Add a variable at the top of the program to tell Processing at what parameter value along 
the curve you want the dot to be drawn. The parameter value should be between 0.0 
(which is the value at the start of the curve) and 1.0 (the value the end of the curve): 

float t = 0.5 ; 

Add code to find the location of the point at that parameter value: 

float x = bezierPoint(x1, x2, x3, x4, t); 

float y = bezierPoint(y1, y2, y3, y4, t); 

Notice that we handle x and y completely independently. There is one function call to find 
the x-coordinate, based on the x-coordinates of the Bézier control points; and there is a 
second function to call to find the y-coordinate, based on the y-coordinates of the Bézier 
control points. 

Now draw a red circle at that point: 

noStroke(); 

fill(255, 0, 0); 

ellipse(x, y, 20, 20);  

Animate the red circle moving along the curve 

To do this you need to increment the parameter t on each time through the draw() 
function, and make sure that it is always between 0.0 and 1.0: 

t += 0.01 ; 

if ( t>1.0 ) { t=0.0; } 
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Can you modify this to make the circle bounce backwards and forwards along the curve, 
rather than jumping to the start when it gets to the end? 

Drawing a tangent vector using bezierTangent() 

We next want to make a line that points in the direction that the circle is moving. We do this 
by finding a vector that is tangent to the curve at the current point and then drawing a line 
in the direction of that vector. Processing has a function to find the tangent vector: 

float xTangent = bezierTangent(x1, x2, x3, x4, t); 

float yTangent = bezierTangent(y1, y2, y3, y4, t); 

As with the bezierPoint() function, we use bezierTangent() to calculate the x 
and y components separately. 

To draw the tangent line, we draw a line from the current point to the current point plus the 
tangent vector. So: 

stroke(255,0,0) ; 

line( x, y, x+xTangent, y+yTangent ) ; 

Notice how long that tangent vector is. A shorter line would be more 
useful to us to indicate the direction and size of the vector. To get a 
shorter line in the right direction, replace xTangent and yTangent 
with xTangent/6 and yTangent/6 (see diagram at right). You will 
be able to see that the tangent vector changes length as it moves.  

Using translation 

Instead of drawing our circle centred at point (x,y), we can get the same effect by drawing 
the circle centred at (0,0) and using a translation to get it to the right place. Replace the 
existing ellipse() command with: 

translate(x, y) ; 

ellipse(0, 0, 20, 20); 

And replace the existing line() command with: 

line( 0, 0, xTangent/6, yTangent/6 ) ; 

You get the same result as before but you no longer need to use x and y in either of the 

shape definitions. Notice how this has simplified the parameters in the call to the line() 
function. 

Using rotation 

We can also remove xTangent and yTangent from the shape definition using a rotation. 

Replace the line() function with a line starting at the origin and pointing along the x-axis: 

line( 0, 0, 50, 0 ); 

This line does not change length as it moves but you’ll notice that it also just keeps pointing 
to the right: it does not point along the curve. We can get it to point along the curve by 
adding another transformation: 

rotate(angle) ; 
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But what should angle be? We can get the angle from the tangent vector 

(xTangent,yTangent) by using the function: 

float angle = atan2( yTangent, xTangent ) ; 

The name of the function, atan2, derives from “arctangent” with “2” arguments. The 
arctangent function returns the angle whose tangent is yTangent/xTangent. We need 
two arguments to distinguish between angles 180 degrees apart, which have the same 
numerical value for tangent but which point in opposite directions. By giving it yTangent 

and xTangent separately, it can distinguish between these cases (e.g., consider the 
difference between atan2(1,1) = 45 degrees and atan2(-1,-1) = 215 degrees). 

So now we have shapes defined relative to the origin and pointing along the x-axis, which 
are put into their correct position and rotation using the functions translate() and 
rotate(). 

A more complicated shape 

This use of translate() and rotate() may not seem to be much of a win in this case, 
but it helps enormously if you have a more complicated shape. For example, replace the 
ellipse() and the line() with this shape: 

beginShape(); 

    vertex(0,0); 

    vertex(-10,-10); 

    vertex(30,0); 

    vertex(-10,10); 

endShape(CLOSE);  

You should get a red arrow shape that moves smoothly along the curve and points along the 

curve. If you tried to do this without using translate() and rotate(), you would 
need a lot of tedious mathematics to work out exactly where to put the four vertices. 

Put the point of the arrow on the curve, rather than the tail 

Can you modify the shape definition so that the front point of the arrow lies on the curve? 

Moving a curve point using the mouse 

As an example of interaction, we will write code to allow the user to move the starting point 
of the curve. We can do this by using the mouseDragged() callback function. 

void mouseDragged(){ 

  x1 = mouseX ; 

  y1 = mouseY ; 

} 

This allows you to move only the first point, (x1,y1). If you want to drag more points, you 

need to write code for the mousePressed() callback that finds which point the mouse is 
closest to, and remembers that point, then use the mouseDragged() callback to move 
that point. In this case, it would be convenient to have an array of the points’ locations 
rather than the separate variables we have used in this worksheet. Also, it helps if some sort 
of indicator mark is drawn at the points’ locations, such as a little square, so that the user 
knows where the points are. 
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Drawing the line differently 

Processing uses the strokeWeight() to set the width of a line. 
Experiment with strokeWeight() to see if you can make it appear as 
if the shape is moving down a black pipe.  

Intersecting two lines 

In Assignment 3, you are going to have to find the intersection 
between two lines. So let’s do a bit of work on handling a 
couple of lines. 

In your code, get rid of the Bézier curve and get the code to 
draw just two lines. The example to the right also draws circles 
on the end points. 

  stroke(0); 

  noFill(); 

  line(x1,y1, x2,y2); 

  line(x3,y3, x4,y4); 

The mathematics of finding the intersection of two lines 

How do we now find the intersection between these two lines P1P2 and P3P4? We went 
through this in lectures. What we are going to do is represent one of the lines 
parametrically, as a pair of equations giving x and y as a function of a parameter s; we then 
represent the other line implicitly, as a function that is equal to zero when a point lies on the 
line ax + by + c = 0. We substitute the parametric form of the first line into the implicit form 
of the second line and solve for the value s, which will tell us the location on the first line 
that is also on the second line. 

First we write one of the lines parametrically in the form P(s)=(1-s)P1+sP2, which expands 
out to the two equations x(s)=(1-s)x1+sx2 and y(s)=(1-s)y1+sy2. 

For the other line, P3P4, we use the implicit form of the line equation: ax+by+c=0. 

We now substitute into that implicit equation the parametric equations for the first line, 
giving us: 

a[(1-s)x1+sx2] + b[(1-s)y1+sy2] + c = 0 

The value of s tells us where on line P1P2 there is a point that also lies on line P3P4. We need 
to find the value of s. We can rearrange that equation to solve for s: 

     a[x1+s(x2-x1)] + b[y1+s(y2-y1)] + c = 0 put all the “s” things together in each [] section 

⇒ ax1 + sa(x2-x1) + by1 + sb(y2-y1) + c = 0 expand out 

⇒ ax1 + by1 + c + s[a(x2-x1)+b(y2-y1)] = 0 group together “s” things and “non-s” things 

⇒ s = -[ax1 + by1 + c] / [a(x2-x1)+b(y2-y1)] get s on its own on one side of the equals sign 

Now, we’ve done all that manipulation without revealing how to calculate the values of a, b, 
c. They are calculated from the positions of P2 and P3, as explained in the lecture notes: 

a = -( y4-y3 )          b = ( x4-x3 )          c = x3y4-y3x4 
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That is a lot of maths to get a single intersection point. To program this up, we can do the 

following, which gets us the intersection point (xi,yi). 
  float a = ... 

  float b = ... 

  float c = ... 

  float s = ... 

  float xi = (1-s)*x1 + s*x2; 

  float yi = (1-s)*y1 + s*y2; 

  fill(0,128,0); 

  ellipse( xi, yi, 10, 10 ); 

You need to work out what to put in place of the “...” 
 
If you run this, you won’t see any difference at first because the two lines are nearly parallel 
(see picture below) so the intersection point is way outside the window to the right. Move 
one of the points so that the two lines intersect and you’ll see the green intersection point 
appear in the window. 
 

               

At left: what you’ll see when the sketch starts: the intersection point is a long way off to the 
right, so you cannot see it.  

In the middle: one of the end points (red) has been dragged down and the intersection point 
is drawn in green. 

At right: the intersection is between infinitely long lines so it appears even if the line 
segments themselves don’t intersect. 

Challenges 

Challenge 1: how do you change the code so that you only 
draw the intersection point if the intersection lies between 

point P1=(x1,y1) and point P2=(x2,y2)? 
Hint: consider what the value of s will be for this case. 

Challenge 2: how do you change the code to draw a line that 
goes through the two end points right to the edges of the 
window? 
Hint: This requires you to find the intersection point of the 
infinite line with each of the four edges of the window and then draw a line between the 
middle two of those edge-intersections. 


